Advertisement

Hydrobiologia

, Volume 480, Issue 1–3, pp 29–39 | Cite as

Integrating classical and microbial food web concepts: evolving views from the open-ocean tropical Pacific

  • Michael R. Landry
Article

Abstract

Over the past half-century, and particularly the last two decades, new paradigms, perspectives and technological capabilities have greatly advanced our understanding of open-ocean pelagic ecosystems. Major new insights have come from the microbial loop concept and related discoveries, the iron limitation hypothesis and ocean time series. Focusing mainly on the tropical and subtropical Pacific Ocean, I review the influences of these new perspectives on classical views of food web complexity, phytoplankton regulation and diversity, and temporal dynamics. ``Microorganisms (bacteria, fungi, protozoa) are responsible for about 95% of the CO2evolved into the atmosphere, while animals contribute about 5%. These estimates are based on figures from terrestrial environments, but there is every reason to believe that microorganisms are relatively as important in the oceans''. (Lecture Note Handouts, OCN 434, Winter, 1971)

food web phytoplankton zooplankton bacteria protists Prochlorococcus grazing balance seasonal blooms nitrogen fixation climate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azam, F., T. Fenchel, J. G. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263.Google Scholar
  2. Banse, K., 1995. Science and the organization in open-sea research: the plankton. Helgoländer Meeresunters. 49: 3-18.Google Scholar
  3. Barlow, M., S. Nigam & E. H. Berberry, 2001. ENSO, Pacific Decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate 14: 2105-2128.Google Scholar
  4. Calbet, A. & M. R. Landry, 1999. Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrohic open-ocean. Limnol. Oceanogr. 44: 1370-1380.Google Scholar
  5. Calbet, A., M. R. Landry & S. Nunnery, 2001. Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific. Aquat. Microb. Ecol. 23: 283-292.Google Scholar
  6. Chisholm, S.W., 1992. Phytoplankton size. In Falkowski, P. G.& A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York: 213-237.Google Scholar
  7. Chisholm, S. W., R. J. Olson, E. R. Zettler, J. Waterbury, R. Goericke & N. Welschmeyer, 1988. A novel free-living prochlorophyte occurs at high cell concentrations in the oceanic euphotic zone. Nature 334: 340-343.Google Scholar
  8. Coale, K. H., K. S. Johnson, S. E. Fitzwater, R. M. Gordon, S. Tanner, F. Chavez, L. Ferioli, C. Sakamoto, P. Rogers, F. Millero, P. Steinberg, P. Nightingale, C. Cooper, W. Cochlan, M. R. Landry, J. Constantinou, G. Rollwagen & A. Trasvina, 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization in the equatorial Pacific. Nature 383: 495-501.Google Scholar
  9. Connell, J., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1304-1310.Google Scholar
  10. Deevey, G. B., 1971. The annual cycle in quantity and composition of the zooplankton in the Sargasso Sea off Bermuda. I. The upper 500 m. Limnol. Oceanogr. 16: 219-240.Google Scholar
  11. Duxbury, A. B. & A. C. Duxbury, 1996. Fundamentals of Oceanography. Wm. C. Brown, Dubuque: 308 pp.Google Scholar
  12. Estep, K. W. & F. MacIntyre, 1989. Taxonomy, life cycle, distribution and dasmotrophy of Chrysochromulina: a theory accounting for scales, haptonema, muciferous bodies and toxicity. Mar. Ecol. Prog. Ser. 57: 11-21.Google Scholar
  13. Flöder, S. & U. Sommer, 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnol. Oceanogr. 44: 1114-1119.Google Scholar
  14. Frost, B. W. & N. C. Franzen, 1992. Grazing vs. iron limitation in the control of phytoplankton stock and nutrient concentration: A chemostat analogue of the Pacific equatorial upwelling zone. Mar. Ecol. Prog. Ser. 83: 291-303.Google Scholar
  15. Garrison, T., 1993. Oceanography. An Introduction to Marine Science. Wadsworth, Belmont: 539 pp.Google Scholar
  16. Grice, G. D. & A. D. Hart, 1962. The abundance and seasonal occurrence and distribution of the epizooplankton between New York and Bermuda. Ecol. Monogr. 32: 287-309.Google Scholar
  17. Gross, G. M., 1972. Oceanography. A View of the Earth. Prentice-Hall, Englewood Cliffs: 497 pp.Google Scholar
  18. Guillou, L., M.-J. Chretiennot-Dinet, S. Boulben, S. Y. Moon-van der Staay & D. Vaulot, 1999. Symbiomonas scintillans gen. et sp. nov. and Picophagus flagellatus gen. et sp. nov. (Heterokonta): two new heterotrophic flagellates of picoplanktonic size. Protist 150: 383-398.Google Scholar
  19. Hardy, A. C., 1924. The herring in relation to its animate environment, Part I. The food and feeding habits of the herring with special reference to the east coast of England. Fish. Invest. Lond. (Ser. 2) 7: 1-53.Google Scholar
  20. Hardy, A. C., 1959. The Open Sea: its Natural History. Part II. Fish & Fisheries. Collins, London: 322 pp.Google Scholar
  21. Hare, S. R. & N. J. Mantua, 2000. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47: 103-145.Google Scholar
  22. Hayward, T. L., E. L. Venrick & J. A. McGowan, 1983. Environmental heterogeneity and plankton community structure in the central North Pacific. J. mar. Res. 41: 711-729.Google Scholar
  23. Isaacs, J. D., 1973. Potential trophic biomasses and trace-substance concentrations in unstructured marine food webs. Mar. Biol. 22: 97-104.Google Scholar
  24. Karl, D. M., 1999. A sea of change: Biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems 2: 181-214.Google Scholar
  25. Karl, D. M., R. R. Bidigare & R. M. Letelier, 2001. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: The domain shift hypothesis. Deep-Sea Res. II 48: 1449-1470.Google Scholar
  26. Landry, M. R., 1977. A review of important concepts in the trophic organization of pelagic ecosystems. Helgoländer Meeresunters. 30: 8-17.Google Scholar
  27. Landry, M. R., H. Al-Mutairi, K. E. Selph, S. Christensen & S. Nunnery, 2001. Seasonal patterns of mesozooplankton abundance and biomass at Station ALOHA. Deep-Sea Res. II. 48: 2037-2062.Google Scholar
  28. Landry, M. R., R. T. Barber, R. R. Bidigare, F. Chai, K. H. Coale, H. G. Dam, M. R. Lewis, S. T. Lindley, J. J. McCarthy, M. R. Roman, D. K. Stoecker, P. G. Verity & J. R. White, 1997. Iron and grazing constraints on primary production in the central equatorial Pacific: an EqPac synthesis. Limnol. Oceanogr. 42: 405-418.Google Scholar
  29. Landry, M. R., J. Constantinou, M. Latasa, S. L. Brown, R. R. Bidigare & M. E. Ondrusek, 2000b. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazing. Mar. Ecol. Prog. Ser. 201: 57-72.Google Scholar
  30. Landry, M. R. & D. L. Kirchman, 2002. Microbial community structure and variability in the tropical Pacific. Deep-Sea Res. II. (in press)Google Scholar
  31. Landry, M. R., M. E. Ondrusek, S. J. Tanner, S. L. Brown, J. Constantinou, R. R. Bidigare, K. H. Coale & S. Fitzwater, 2000a. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201: 27-42.Google Scholar
  32. Laws, E. A., G. R. DiTullio & D. G. Redalje, 1987. High phytoplankton growth and production rates in the North Pacific subtropical gyre. Limnol. Oceanogr. 32: 905-918.Google Scholar
  33. Letelier, R. M. & D.M. Karl, 1996. The role of Trichodesmium spp. in the productivity of the subtropical North Pacific Ocean. Mar. Ecol. Prog. Ser. 133: 263-273.Google Scholar
  34. Longhurst, A. R., 1967. Diversity and trophic structure of zooplankton in the California Current. Deep-Sea Res. 14: 393-408.Google Scholar
  35. Mann, E. L. & S. W. Chisholm, 2000. Iron limits the cell division rate of Prochlorococcus in the Eastern Equatorial Pacific. Limnol. Oceanogr. 45: 1067-1076.Google Scholar
  36. McGowan, J. A., 1977. What regulates pelagic community structure in the Pacific? In Anderson, N. R. & B. J. Zahuranec (eds), Oceanic Sound Scattering Prediction. Plenum Press, New York: 423-444.Google Scholar
  37. McGowan, J. A. & T. L. Hayward, 1978. Mixing and oceanic productivity. Deep-Sea Res. 25: 771-793.Google Scholar
  38. McGowan, J. A. & P. W. Walker, 1979. Structure in the copepod community of the North Pacific central gyre. Ecol. Monogr. 49: 195-226.Google Scholar
  39. McGowan, J. A. & P. W. Walker, 1985. Dominance and diversity maintenance in an oceanic ecosystem. Ecol. Monogr. 55: 103-118.Google Scholar
  40. Menzel, D. W. & J. R. Ryther, 1961. Zooplankton in the Sargasso Sea off Bermuda and its relation to organic production. J. Cons. int. exp. Mer, 26: 250-258.Google Scholar
  41. Moon-van der Staay, S. Y., R. De Wachter & D. Vaulot, 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409: 607-610.Google Scholar
  42. Moore, L. R. & S. W. Chisholm, 1999. Photophysiology of the marine cyanobacterium Prochlorococcus: ecotypic differences among cultured isolates. Limnol. Oceanogr. 44: 628-638.Google Scholar
  43. Morel, F. M. M., J. G. Rueter & N. M. Price, 1991. Iron nutrition of phytoplankton and its possible importance in the ecology of open ocean regions with high nutrient and low biomass. Oceanography 4: 56-61.Google Scholar
  44. Mullin, M. M., 1967. On the feeding behavior of planktonic marine copepods and the separation of their ecological niches. Mar. biol. assoc. India, Proc. Symp. Crustacea, Ser. 2, Pt. 3: 955-964.Google Scholar
  45. Partensky, F., W. R. Hess & D. Vaulot, 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Molec. Biol. Rev. 63: 106-107.Google Scholar
  46. Pinet, P. R., 1998. Invitation to Oceanography. Jones and Bartlett, London: 508 pp.Google Scholar
  47. Pomeroy, L. R., 1974. The ocean's food web, a changing paradigm. BioScience 24: 499-504.Google Scholar
  48. Raymont, J. E. G., 1963. Plankton and Productivity in the Oceans. Pergamon Press, Oxford: 660 pp.Google Scholar
  49. Richerson, P., R. Armstrong & C. R. Goldman, 1970. Contemporaneous disequilibrium, a new hypothesis to explain the ‘paradox of plankton’. Proc. natl. Acad. Sci. 67: 1710-1714.Google Scholar
  50. Ryther, J. H., 1969. Photosynthesis and fish production in the sea. The production of organic matter and its conversion to higher forms of life vary throughout the world ocean. Science 166: 72-76.Google Scholar
  51. Scharek, R., M. Latasa, D. M. Karl & R. R. Bidigare, 1999. Temporal variations in diatom abundance and downward vertical flux in the oligotrophic North Pacific gyre. Deep-Sea Res. I 46: 1051-1075.Google Scholar
  52. Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson's heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1-7.Google Scholar
  53. Steele, J. H., 1974. The Structure of Marine Ecosystems. Harvard Univ. Press, Cambridge: 129 pp.Google Scholar
  54. Steemann Nielsen, J., 1958. The balance between phytoplankton and zooplankton in the sea. J. Cons. int. exp. Mer 23: 178-188.Google Scholar
  55. Strom, S. L. & E. J. Buskey, 1993. Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda. Limnol. Oceanogr. 38: 965-977.Google Scholar
  56. Sumich, J. L., 1976. An Introduction to the Biology of Marine Life. Wm. C. Brown, Dubuque: 449 pp.Google Scholar
  57. Stoecker, D. K., 1998. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur. J. Protistol. 34: 281-290.Google Scholar
  58. Sverdrup, H. U., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. int. exp. Mer 18: 287-295.Google Scholar
  59. Thingstad, F. T., 1998. A theoretical approach to structuring mechanisms in the pelagic food web. Hydrobiologia 363: 59-72.Google Scholar
  60. Timonin, A. G., 1969. The quantitative relationship between different trophic groups of plankton in frontal zones of the tropical ocean. Oceanology 9: 686-694.Google Scholar
  61. Venrick, E. L., 1974. The distribution and significance of Richelia intracellularis Schmidt in the North Pacific Central Gyre. Limnol. Oceanogr. 19: 437-445.Google Scholar
  62. Venrick, E. L., 1995. Scales of variability in a stable environment: phytoplankton in the central North Pacific. In Powell, T. M. & J. H. Steele (eds), Ecological Time Series. Chapman and Hall, New York: 150-180.Google Scholar
  63. Venrick, E. L., J. A. McGowan, D. R. Cayan & T. L. Hayward, 1987. Climate and chlorophyll-a: long-term trends in the central North Pacific Ocean. Science 238: 70-72.Google Scholar
  64. Heinbokel, J. F., 1986. Occurrence of Richelia intracellularis (Cyanophyta) within diatoms Hemiaulis haukii and H. membranaceus off Hawaii. J. Phycol. 22: 399-403.Google Scholar
  65. Hulburt, E. N., 1963. The diversity of phytoplankton populations in oceanic, coastal, and estuarine regions. J. mar. Res. 21: 81-93.Google Scholar
  66. Isaacs, J. D., 1972. Unstructured marine food webs and ‘pollutant analogues’. Fish. Bull. U.S. 70: 1053-1059.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Michael R. Landry
    • 1
  1. 1.Department of OceanographyUniversity of Hawaii at ManoaHonoluluU.S.A

Personalised recommendations