Journal of Computer-Aided Molecular Design

, Volume 16, Issue 7, pp 521–533 | Cite as

Maximum common subgraph isomorphism algorithms for the matching of chemical structures

Abstract

The maximum common subgraph (MCS) problem has become increasingly important in those aspects of chemoinformatics that involve the matching of 2D or 3D chemical structures. This paper provides a classification and a review of the many MCS algorithms, both exact and approximate, that have been described in the literature, and makes recommendations regarding their applicability to typical chemoinformatics tasks.

Algorithm graph matching graph similarity isomorphism algorithm maximum common subgraph maximum common substructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuhl, F., Crippen, G. and Friesen, D., J. Comput. Chem., 5 (1984) 24.Google Scholar
  2. 2.
    Raymond, J. and Willett, P., J. Comput.-Aided Mol. Des., 16 (2002) 59.Google Scholar
  3. 3.
    Willett, P., IMA Vol. Math. Its Appl., 108 (1999) 11.Google Scholar
  4. 4.
    Gifford, E., Johnson, M., Smith, D. and Tsai, C., Network Science, 2 (1996) 1.Google Scholar
  5. 5.
    McGregor, J. and Willett, P., J. Chem. Inf. Comput. Sci., 21 (1981) 137.Google Scholar
  6. 6.
    Tonnelier, C., Jauffret, P., Hanser, T. and Kaufman, G., Tetrahedron Comput. Methodol., 3 (1990) 351.Google Scholar
  7. 7.
    Armitage, J.E., Crowe, J.E., Evans, P.N. and Lynch, M.F., J. Chem. Doc., 7 (1967) 209.Google Scholar
  8. 8.
    Arita, M., J. Jap. Soc. Artific. Intell., 15 (2000) 703.Google Scholar
  9. 9.
    Chen, L. and Robien, W., J. Chem. Inf. Comput. Sci., 34 (1994) 934.Google Scholar
  10. 10.
    Cone, M., Venkataraghavan, R. and McLafferty, F., J. Am. Chem. Soc., 99 (1977) 7668.Google Scholar
  11. 11.
    Horaud, R. and Skordas, T., IEEE Trans. Pattern Anal. Mach. Intell., 11 (1989) 1168.Google Scholar
  12. 12.
    Pelillo, M., Siddiqi, K. and Zucker, S.W., IEEE Trans. Pattern Anal. Mach. Intell., 21 (1999) 1105.Google Scholar
  13. 13.
    Shearer, K., Bunke, H. and Venkatesh, S., Video Indexing and Similarity Retrieval by Largest Common Subgraph Detection Using Decision Trees, No. IDIAP-RR 00–15, Dalle Molle Institute for Perceptual Artificial Intelligence, Martigny, Valais, Switzerland, 2000.Google Scholar
  14. 14.
    Bolles, R. and Cain, R., Int. J. Robotics Res., 1 (1982) 57.Google Scholar
  15. 15.
    Pla, F. and Marchant, J., Comput. Vision Image Understand., 66 (1997) 271.Google Scholar
  16. 16.
    Radig, B., Pattern Recogn., 17 (1984) 161.Google Scholar
  17. 17.
    Yang, B., Snyder, W. and Bilbro, G., Image and Vision Computing, 7 (1989) 135.Google Scholar
  18. 18.
    Diestel, R., Graph Theory, Springer-Verlag, New York, 2000.Google Scholar
  19. 19.
    McGregor, J., Software Pract. Exper., 12 (1982) 23.Google Scholar
  20. 20.
    Whitney, H., Amer. J. Math., 54 (1932) 150.Google Scholar
  21. 21.
    Beineke, L.W., J. Comb. Theory, 9 (1970) 129.Google Scholar
  22. 22.
    van Rooij, A. and Wilf, H., Acta Math. Hungar., 16 (1965) 263.Google Scholar
  23. 23.
    Nicholson, V., Tsai, C., Johnson, M. and Naim, M., In King, R.B. and Rouvray, D.H. (Eds.), Graph Theory and Topology in Chemistry, Elsevier, Athens, GA, 1987, pp. 226.Google Scholar
  24. 24.
    Kvasnicka, V. and Pospichal, J., Reports in Molecular Theory, 1 (1990) 99.Google Scholar
  25. 25.
    Durand, P., An Improved Program for Topological Similarity Analysis of Molecules, Department of Mathematics and Computer Science, Kent State, Toledo, OH, 1996.Google Scholar
  26. 26.
    Durand, P., Pasari, R., Baker, J. and Tsai, C., Internet J. Chem., 2 (1999) 1.Google Scholar
  27. 27.
    Koch, I., Theor. Comput. Sci., 250 (2001) 1.Google Scholar
  28. 28.
    Raymond, J., Gardiner, E. and Willett, P., Comput. J., in the press.Google Scholar
  29. 29.
    Chen, C.K. and Yun, D.Y., International Conference on Systems, Signals, Control, Computers, Durban, South Africa, 1998.Google Scholar
  30. 30.
    Kann, V., On the Approximability of NP-Complete Optimization Problems, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, Sweden, 1992.Google Scholar
  31. 31.
    Garey, M.R. and Johnson, D.S., Computers and Intractability, W. H. Freeman, San Francisco, CA, 1979.Google Scholar
  32. 32.
    Levi, G., Calcolo, 9 (1972) 341.Google Scholar
  33. 33.
    Bessonov, Y.E., Vychisl. Sistemy, (1985) 3.Google Scholar
  34. 34.
    Barrow, H. and Burstall, R., Inf. Proc. Lett., 4 (1976) 83.Google Scholar
  35. 35.
    Vizing, V.G., Third All-Union Conference on Problems of Theoretical Cybernetics, Novosibirsk, 1974, pp. 124.Google Scholar
  36. 36.
    Kozen, D., SIGACT News, 10 (1978) 50.Google Scholar
  37. 37.
    Grasselli, A., Calcolo, 3 (1966) 165.Google Scholar
  38. 38.
    Bron, C. and Kerbosch, J., Commun. ACM, 16 (1973) 575.Google Scholar
  39. 39.
    Ogawa, H., Pattern Recogn., 19 (1986) 35. 533Google Scholar
  40. 40.
    Koch, I. and Lengauer, T., Int. Conf. Intell. Syst. Mol. Biol., 5th, 1997, pp. 167.Google Scholar
  41. 41.
    Takahashi, Y., Maeda, S. and Sasaki, S., Anal. Chim. Acta, 200 (1987) 363.Google Scholar
  42. 42.
    Brint, A.T. and Willet, P., J. Chem. Inf. Comput. Sci., 27 (1987) 152.Google Scholar
  43. 43.
    Martin, Y., Bures, M., et al., J. Comput.-Aided Mol. Des., 7 (1993) 83.Google Scholar
  44. 44.
    Bayada, D. and Johnson, A.P., Underst. Chem. React., 14 (1995) 243.Google Scholar
  45. 45.
    Bessonov, Y. and Skorobogatov, V., Vychisl. Sistemy, (1982) 3.Google Scholar
  46. 46.
    Bessonov, Y.E., Vychisl. Sistemy, (1985) 23.Google Scholar
  47. 47.
    Skorobogatov, V.A., Applied Problems on Graphs and Networks, Akad. Nauk SSSR Sibirsk, Otdel., Vychisl. Tsentr, 1981, pp. 117.Google Scholar
  48. 48.
    Bessonov, Y.E., Vychisl. Sistemy, (1987) 43.Google Scholar
  49. 49.
    Raymond, J., Gardiner, E. and Willet, P., J. Chem. Inf. Comput. Sci., 42 (2002) 305.Google Scholar
  50. 50.
    Wong, A. and Akinniyi, F., Proc. Int. Conf. Systems, Man and Cybern., Bombay & New Delhi, India, 1983, pp. 197.Google Scholar
  51. 51.
    Akkiniyi, F., Wong, A.K.C. and Stacey, D. A., IEEE Transactions on Systems, Man and Cybernetics, IEEE, 1986, pp. 740.Google Scholar
  52. 52.
    Ullmann, J.R., J. ACM, 23 (1976) 31.Google Scholar
  53. 53.
    Barnard, J.M., J. Chem. Inf. Comput. Sci., 33 (1993) 532.Google Scholar
  54. 54.
    Akutsu, T., IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, E76–A (1993) 1488.Google Scholar
  55. 55.
    Gabow, H.N., Inf. Proc. Lett., 74 (2000) 107.Google Scholar
  56. 56.
    Wagener, M. and Gasteiger, J., Angew. Chem. Int. Ed. Engl., 33 (1994) 1189.Google Scholar
  57. 57.
    Brown, R.D., Jones, G., Willett P. and Glen, R., J. Chem. Inf. Comput. Sci., 34 (1994) 63.Google Scholar
  58. 58.
    Wang, T. and Zhou, J., J. Chem. Inf. Comput. Sci., 37 (1997) 828.Google Scholar
  59. 59.
    Xu, J., J. Chem. Inf. Comput. Sci., 36 (1996) 25.Google Scholar
  60. 60.
    Frohlich, H., Kosir, A. and Zajc, B., Inform. Sci., 133 (2001) 195.Google Scholar
  61. 61.
    Funabiki, N. and Kitamichi, J., IEICE Trans. Inf. &Syst., E82–D (1999) 1145.Google Scholar
  62. 62.
    Kirkpatric, S., Gelatt, C.D. and Vecchi, M.P., Science, 220 (1983) 671.Google Scholar
  63. 63.
    Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Des., 5 (1991) 107.Google Scholar
  64. 64.
    Schadler, I., Wysotzki, I., Komorowski, J. and Zytkow, J., In Principles of Data Mining and Knowledge Discovery, 1997, pp. 254.Google Scholar
  65. 65.
    Wipke, W.T. and Rogers, D., Tetrahedron Comput. Methodol., 2 (1989) 177.Google Scholar
  66. 66.
    Varkony, T., Shiloach, Y. and Smith, D., J. Chem. Inf. Comput. Sci., 19 (1979) 104.Google Scholar
  67. 67.
    Takahashi, Y., Satoh, Y. and Sasaki, S., Anal. Sci., 3 (1987) 23.Google Scholar
  68. 68.
    Hagadone, T.R., J. Chem. Inf. Comput. Sci., 32 (1992) 515.Google Scholar
  69. 69.
    Bayada, D.M., Simpson, R.W., Johnson, A.P. and Laurenco, C., J. Chem. Inf. Comput. Sci., 32 (1992) 680.Google Scholar
  70. 70.
    Brown, R.D., A Hyperstructure Model for Chemical Structure Handling, Department of Information Studies, University of Sheffield, Sheffield, UK, 1993.Google Scholar
  71. 71.
    Chen, Z.Z., Automata, Languages and Programming, Springer, 1996, pp. 268.Google Scholar
  72. 72.
    Chen, L. and Robien, W., J. Chem. Inf. Comput. Sci., 32 (1992) 501.Google Scholar
  73. 73.
    Sheridan, R.P. and Miller, M.D., J. Chem. Inf. Comput. Sci., 38 (1998) 915.Google Scholar
  74. 74.
    Gondran, M., Minoux, M. and Vajda, S., Graphs and Algorithms, John Wiley & Sons, 1984, pp. 41.Google Scholar
  75. 75.
    Syslo, M., Deo, N. and Kowalik, J., Discrete Optimization Algorithms, Prentice-Hall, 1983, pp. 227.Google Scholar
  76. 76.
    Jørgensen, A.M.M. and Pedersen, J.T., J. Chem. Inf. Comput. Sci., 41 (2001) 338.Google Scholar
  77. 77.
    Gardiner, E., Artymiuk, P. and Willett, P., J. Mol. Graph. Model., 15 (1997) 245.Google Scholar
  78. 78.
    Crandell, C.W. and Smith, D.H., J. Chem. Inf. Comput. Sci., 23 (1983) 186.Google Scholar
  79. 79.
    Masuda, S., Yoshioka, H. and Tanaka, E., Electronics and Communications in Japan. Part 3, 81 (1998) 48.Google Scholar
  80. 80.
    Takahashi, Y., Sukekawa, M. and Sasaki S., J. Chem. Inf. Comput. Sci., 32 (1992) 639.Google Scholar
  81. 81.
    Yuan, S., Zheng, C., Zhao, X. and Zeng, F., Anal. Chim. Acta, 235 (1990) 239.Google Scholar
  82. 82.
    Gillet, V.J., Downs, G.M., Holliday, J.D., Lynch, M.F., Dethlefsen, W., J. Chem. Inf. Comput. Sci., 31 (1991) 260.Google Scholar
  83. 83.
    Rarey, M. and Dixon J.S., J. Comput.-Aided Mol. Des., 12 (1998) 471.Google Scholar
  84. 84.
    Clark, D.E., Willett, P. and Kenny, P.W., J. Mol. Graphics, 10 (1992) 194.Google Scholar
  85. 85.
    Pepperrell, C.A., Taylor, R. and Willett, P., Tetrahedron Comput. Methodol., 3 (1992) 575.Google Scholar
  86. 86.
    Johnson, M., Naim, M., Nicholson, V. and Tsai, C., In King, R.B. and Rouvray, D.H. (Eds.), Graph Theory and Topology in Chemistry, Elsevier Science Publishers, 1987, pp. 219.Google Scholar
  87. 87.
    Brint, A. and Willett, P., J. Comput.-Aided Mol. Des., 2 (1989) 311.Google Scholar
  88. 88.
    Ting, A., McGuire, R., Johnson, P. and Green6 S., J. Chem. Inf. Comput. Sci., 40 (2000) 347.Google Scholar
  89. 89.
    Wood, D., Oper. Res. Lett., 21 (1997) 211.Google Scholar
  90. 90.
    Ostergard, P., Discrete Appl. Math., 120 (2002) 195.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Pfizer Global Research and Development, Ann Arbor LaboratoriesAnn ArborUSA

Personalised recommendations