Plant Molecular Biology

, Volume 50, Issue 6, pp 925–947 | Cite as

Multi-protein complexes in eukaryotic gene transcription

  • Ernest Martinez


Specific transcription initiation by RNA polymerase II at eukaryotic protein-coding genes involves the cooperative assembly at the core promoter of more than 40 distinct proteins – with a total mass of over 2 MDa – including RNA polymerase II itself and general/basal transcription initiation factors, to form a stable pre-initiation complex (PIC). In vivo, PIC assembly is a major point of regulation by sequence-specific transcription regulators (activators and repressors) and is hindered by the packaging of promoter DNA into nucleosomes and higher order chromatin structures. Genetic and biochemical studies have recently identified a variety of transcription cofactors/co-regulators (coactivators and corepressors) that interact with sequence-specific regulators and/or various components of the general/basal transcription machinery and are essential for regulated transcription. An emerging view from these studies is that regulators must target two types of transcription cofactors: chromatin-modifying/remodeling cofactors and general cofactors that associate with and/or influence the activities of components of the general/basal transcription machinery. The recent biochemical identification and characterization of many different chromatin-modifying and general transcription cofactors has revealed their often complex multi-subunit nature and a previously unsuspected level of structural and functional redundancy. Another emerging theme is the multifunctional nature of chromatin-modifying cofactor complexes that appear to couple gene-specific transcription to other cellular processes.


Transcription Initiation Core Promoter Transcription Machinery High Order Chromatin Biochemical Identification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abmayr, S.M., Workman, J.L. and Roeder, R.G. 1988. The pseudorabies immediate early [protein stimulates in vitro transcription by facilitating TFIID: promoter interactions. Genes Dev. 2: 542–553.Google Scholar
  2. Allard, S., Utley, R.T., Savard, J., Clarke, A., Grant, P., Brandl, C.J., Pillus, L., Workman, J.L. and Cote, J. 1999. EMBO J. 18: 5108–5119.Google Scholar
  3. Apone, L.M., Virbasius, C.M., Reese, J.C. and Green, M.R. 1996. Yeast TAF(II)90 is required for cell-cycle progression through G2/M but not for general transcription activation. Genes Dev. 10: 2368–2380.Google Scholar
  4. Baldwin, D.A. and Gurley, W.B. 1996. Isolation and characterization of cDNAs encoding transcription factor IIB from Arabidopsis and soybean. Plant J. 10: 561–568.Google Scholar
  5. Belotserkovskaya, R., Sterner, D.E., Deng, M., Sayre, M.H, Lieberman, P.M. and Berger, S.L. 2000. Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters. Mol. Cell. Biol. 20: 634–647.Google Scholar
  6. Berger, S.L. 2001. The histone modification circus. Science 292: 64–65.Google Scholar
  7. Berk, A.J. 2000. TBP-like factors come into focus. Cell 103: 5–8.Google Scholar
  8. Bhaumik, S.R. and Green, M.R. 2001. SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes Dev. 15: 1935–1945.Google Scholar
  9. Björklund, S., Almouzni, G., Davidson, I., Nightingale, K.P. and Weiss, K. 1999. Global transcription regulators of eukaryotes. Cell 96: 759–767.Google Scholar
  10. Brand, M., Yamamoto, K., Staub, A. and Tora, L. 1999. Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J. Biol. Chem. 274: 18285–18289.Google Scholar
  11. Brand, M., Moggs, J.G., Oulad-Abdelghani, M., Lejeune, F., Dilworth, F.J., Stevenin, J., Almouzni, G. and Tora, L. 2001. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J. 20: 3187–3196.Google Scholar
  12. Brown, C.E., Lechner, T., Howe, L. and Workman, J.L. 2000. The many HATs of transcription coactivators. Trends Biochem. Sci. 25: 15–19.Google Scholar
  13. Brzeski, J., Podstolski, W., Olczak, K. and Jerzmanowski, A. 1999. Identification and analysis of the Arabidopsis thaliana BSH gene, a member of the SNF5 gene family. Nucl. Acids Res. 27: 2393–2399.Google Scholar
  14. Burke, L.J. and Baniahmad, A. 2000. Co-repressors 2000. FASEB J. 14: 1876–1888.Google Scholar
  15. Burke, T.W. and Kadonaga, J.T. 1996. Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev. 10: 711–724.Google Scholar
  16. Burke, T.W. and Kadonaga, J.T. 1997. The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes Dev. 11: 3020–3031.Google Scholar
  17. Burley, S.K. and Roeder, R.G. 1996. Biochemistry and structural biology of transcription (factor IID (TFIID). Annu. Rev. Biochem. 65: 769–799.Google Scholar
  18. Carey, M. 1998. The enhanceosome and transcriptional synergy. Cell 92: 5–8.Google Scholar
  19. Castaño, E., Gross, P., Wang, Z., Roeder, R.G. and Oelgeschläger, T. 2000. The C-terminal domain-phosphorylated IIO form of RNA polymerase II is associated with the transcription repressor NC2 (Dr1/DRAP1) and is required for transcription activation in human nuclear extracts. Proc. Natl. Acad. Sci. USA 97: 7184–7189.Google Scholar
  20. Chalkley, G.E. and Verrijzer, C.P. 1999. DNA binding site selection by RNA polymerase II TAFs: a TAF(II)250-TAF(II) 150 complex recognizes the initiator. EMBO J. 18: 4835–4845.Google Scholar
  21. Chang, W.H. and Kornberg, R.D. 2000. Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell 102: 609–613.Google Scholar
  22. Chen, Z. and Manley, J.L. 2000. Robust mRNA transcription in chicken DT40 cells depleted of TAF(II)31 suggests both functional degeneracy and evolutionary divergence. Mol. Cell. Biol. 20: 5064–5076.Google Scholar
  23. Chen, J.L., Attardi, L.D., Verrijzer, C.P., Yokomori, K. and Tjian, R. 1994. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79: 93–105.Google Scholar
  24. Chen, D., Ma, H., Hong, H., Koh, S.S., Huang, S.M., Schurter, B.T., Aswad, D.W. and Stallcup, M.R. 1999. Regulation of transcription by a protein methyltransferase. Science L 284: 2174–2177.Google Scholar
  25. Chi, T. and Carey, M. 1996. Assembly of the isomerized TFIIA-TFIID-TATA ternary complex is necessary and sufficient for gene activation. Genes Dev. 10: 2540–2550.Google Scholar
  26. Chi, T., Lieberman, P., Ellwood, K. and Carey, M. 1995. A general mechanism for transcriptional synergy by eukaryotic activators. Nature 377: 254–257.Google Scholar
  27. Chi, Y., Huddleston, M.J., Zhang, X., Young, R.A., Annan, R.S., Carr, S.A., Deshaies, R.J. 2001. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev. 15: 1078–1092.Google Scholar
  28. Chiang, C.M. and Roeder, R.G. 1995. Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267: 531–536.Google Scholar
  29. Cosma, M.P., Tanaka, T. and Nasmyth, K. 1999. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle-and developmentally regulated promoter. Cell 97: 299–311.Google Scholar
  30. Cramer, P., Bushnell, D.A. and Kornberg, R.D. 2001. Structural basis of transcription: RNA polymerase II at 2.8 Å resolution. Science 292: 1863–1876.Google Scholar
  31. Dantonel, J.C., Murthy, K.G., Manley, J.L. and Tora, L. 1997. Transcription factor TFIID recruits factor CPSF for formation of 3' end of mRNA. Nature 389: 399–402.Google Scholar
  32. de Laat, W.L., Jaspers, N.G. and Hoeijmakers, J.H. 1999. Molecular mechanism of nucleotide excision repair. Genes Dev. 13: 768–785.Google Scholar
  33. Dikstein, R., Ruppert, S. and Tjian, R. 1996. TAFII250 is a bipartite protein kinase that phosphorylates the base transcription factor RAP74. Cell 84: 781–790.Google Scholar
  34. Dotson, M.R., Yuan, C.X., Roeder, R.G., Myers, L.C., Gustafsson, C.M., Jiang, Y.W., Li, Y., Kornberg, R.D. and Asturias, F.J. 2001. Structural organization of yeast and mammalian mediator complexes. Proc. Natl. Acad. Sci. USA 97: 14307–14310.Google Scholar
  35. Dudley, A.M., Rougeulle, C. and Winston, F. 1999. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev. 13: 2940–2945.Google Scholar
  36. Dvir, A., Conaway, J.W. and Conaway, R.C. 2001. Mechanism of transcription initiation and promoter escape by RNA polymerase II. Curr. Opin. Genet. Dev. 11: 209–214.Google Scholar
  37. Eberharter, A., Sterner, D.E., Schieltz, D., Hassan, A., Yates, J.R. 3rd, Berger, S.L., Workman, J.L. 1999. The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae. Mol. Cell. Biol. 19: 6621–6631.Google Scholar
  38. Eisenmann, D.M., Arndt, K.M., Ricupero, S.L., Rooney, J.W. and Winston, F. 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6: 1319–1331.Google Scholar
  39. Emami, K.H., Jain, A. and Smale, S.T. 1997. Mechanism of synergy between TATA and initiator: synergistic binding of TFIID following a putative TFIIA-induced isomerization. Genes Dev. 11: 3007–3019.Google Scholar
  40. Eshed, Y., Baum, S.F. and Bowman J.L. 1999. Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99: 199–209.Google Scholar
  41. Flanagan, P.M., Kelleher, R.J. 3rd, Sayre, M.H., Tschochner, H. and Kornberg, R.D. 1991. A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350: 436–438.Google Scholar
  42. Finnegan, E.J. 2001. Is plant gene expression regulated globally? Trends Genet. 17: 361–365.Google Scholar
  43. Fondell, J.D., Guermah, M., Malik, S. and Roeder, R.G. 1999. Thyroid hormone receptor-associated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box-binding protein-associated factors of TFIID. Proc. Natl. Acad. Sci. USA 96: 1959–1964.Google Scholar
  44. Fry, C.J. and Peterson, C.L. 2001. Chromatin remodeling enzymes: who's on first? Curr. Biol. 11: R185–R197.Google Scholar
  45. Gangloff, Y.G., Werten, S., Romier, C., Carre, L., Poch, O., Moras, D. and Davidson, I. 2000. Mol. Cell. Biol. 20: 340–351.Google Scholar
  46. Gangloff, Y.G., Pointud, J.C, Thuault, S., Carre, L., Romier, C., Muratoglu, S., Brand, M., Tora, L., Couderc, J.L. and Davidson, I. 2001. The TFIID components human TAFII140 and Drosophila BIP2 (TAFII155) are novel metazoan homologues of yeast TAFII47 containing a histone fold and a PHD finger. Mol. Cell. Biol. 21: 5109–5121.Google Scholar
  47. Gasch, A., Hoffmann, A., Horikoshi, M., Roeder, R.G. and Chua, N.H. 1990. N.G. 1990. Arabidopsis thaliana contains two genes for TFIID. Nature 346: 390–394.Google Scholar
  48. Ge, H. and Roeder, R.G. 1994. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell 78: 513–523.Google Scholar
  49. Geiger, J.H., Hahn, S., Lee, S. and Sigler, P.B. 1996. Crystal structure of the yeast TFIIA/TBP/DNA complex. Science 272: 830–836.Google Scholar
  50. Geisberg, J.V., Holstege, F.C., Young, R.A. and Struhl, K. 2001. Yeast NC2 associates with the RNA polymerase II preinitiation complex and selectively affects transcription in vivo. Mol. Cell. Biol. 21: 2736–2742.Google Scholar
  51. Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A. and Kornberg, R.D. 2001. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292: 1876–1882.Google Scholar
  52. Grant, P.A. 2001. A tale of histone modifications. Genome Biol. 2: reviews0003.1-0003.6Google Scholar
  53. Grant, P.A., Duggan, L., Cote, J., Roberts, S.M., Brownell, J.E., Candau, R., Ohba, R., Owen-Hughes, T., Allis, C.D., Winston, F., Berger, S.L. and Workman, J.L. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11: 1640–1650.Google Scholar
  54. Grant, P.A., Schieltz, D., Pray-Grant, M.G., Steger, D.J., Reese, J.C., Yates, J.R. III and Workman, J.L. 1998a. A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94: 45–53.Google Scholar
  55. Grant, P.A., Schieltz, D., Pray-Grant, M.G., Yates, J.R. III and Workman, J.L. 1998b. The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol. Cell 2: 863–867.Google Scholar
  56. Green, M.R. 2000. TBP-associated factors (TAFIIS ): multiple, selective transcriptional mediators in common complexes. Trends Biochem. Sci. 25: 59–63.Google Scholar
  57. Hampsey, M. 1998. Molecular genetics of the RNA polymerase II general transcription machinery. Microbiol. Mol. Biol. Rev. 62: 465–503.Google Scholar
  58. Hansen, S.K. and Tjian, R. 1995. TAFs and TFIIA mediate differential utilization of the tandem Adh promoters. Cell 82: 565–575.Google Scholar
  59. Hassan, A.H., Neely, K.E. and Workman, J.L. 2001. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104: 817–827.Google Scholar
  60. Hoeijmakers, J.H., Egly,, J.M. and Vermeulen, W. 1996. TFIIH: a key component in multiple DNA transactions. Curr. Opin. Genet. Dev. 6: 26–33.Google Scholar
  61. Hoey, T., Dynlacht, B.D., Peterson, M.G., Pugh, B.F. and Tjian, R. 1990. Isolation and characterization of the Drosophila gene encoding the TATA box binding protein, TFIID. Cell 61: 1179–1186.Google Scholar
  62. Hoffmann, A., Sinn, E., Yamamoto, T., Wang, J., Roy, A., Horikoshi, M. and Roeder, R.G. 1990. Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature 346: 387–390.Google Scholar
  63. Hoffmann, A., Chiang, C.M., Oelgeschläger, T., Xie, X., Burley, S.K., Nakatani, Y. and Roeder, R.G. 1996. A histone octamer-like structure within TFIID. Nature 380: 356–359.Google Scholar
  64. Hoffmann, A., Oelgeschläger, T. and Roeder, R.G. 1997. Considerations of Transcriptional control mechanisms: do TFIID-core promoter complexes recapitulate nucleosome-like functions? Proc. Natl. Acad. Sci. USA 94: 8928–8935.Google Scholar
  65. Holmes, M.C. and Tjian, R. 2000. Promoter-selective properties of the TBP-related factor TRF1. Science 288: 867–870.Google Scholar
  66. Holstege, F.C., Jennings, E.G., Wyrick, J.J., Lee, T.I., Hengartner, C.J., Green, M.R., Golub, T.R., Lander, E.S. and Young, R.A. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717–728.Google Scholar
  67. Horikoshi, M., Carey, M.F., Kakidani, H. and Roeder, RG. 1988a. Mechanism of action of a yeast activator: direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions. Cell 54: 665–669.Google Scholar
  68. Horikoshi, M., Hai, T., Lin, Y.S., Green, M.R. and Roeder, R.G. 1988b. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54: 1033–1042.Google Scholar
  69. Horiuchi, J., Silverman, N., Pina, B., Marcus, G.A. and Guarente, L. 1997. ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3. Mol. Cell. Biol. 17: 3220–3228.Google Scholar
  70. Ikeda, K., Halle, J.P., Stelzer, G., Meisterernst, M. and Kawakami, K. 1998. Involvement of negative cofactor NC2 in active repression by zinc finger-homeodomain transcription factor AREB6. Mol. Cell. Biol. 18: 10–18.Google Scholar
  71. Ikeda, K., Steger, D.J., Eberharter, A. and Workman, J.L. 1999. Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes. Mol. Cell. Biol. 19: 855–863.Google Scholar
  72. Ikura, T., Ogryzko, V.V, Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, J. and Nakatani, Y. 2000. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102: 463–473.Google Scholar
  73. Imhof, A., Yang, X.J., Ogryzko, V.V., Nakatani, Y., Wolffe, A.P. and Ge, H. 1997. Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7: 689–692.Google Scholar
  74. Jacobson, R.H., Ladurner, A.G., King, D.S., Tjian, R. 2000. Structure and function of a human TAFII250 double bromodomain module. Science 288: 1422–1425.Google Scholar
  75. Kaiser, K., Stelzer, G. and Meisterernst, M. 1995. The coactivator p15 (PC4) initiates transcriptional activation during TFIIATFIID-promoter complex formation. EMBO J. 14: 3520–3527.Google Scholar
  76. Kamada, K., Shu, F., Chen, H., Malik, S., Stelzer, G., Roeder, R.G., Meisterernst, M., Burley, S.K. 2001. Crystal structure of negative cofactor 2 recognizing the TBP-DNA transcription complex. Cell 106: 71–81.Google Scholar
  77. Kang, J.J., Auble, D.T., Ranish, J.A., Hahn, S. 1995. Analysis of the yeast transcription factor TFIIA: distinct functional regions and a polymerase II-specific role in basal and activated transcription. Mol. Cell. Biol. 15: 1234–1243.Google Scholar
  78. Kim, Y.J., Bjorklund, S., Li, Y., Sayre, M.H. and Kornberg, R.D. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599–608.Google Scholar
  79. Knoepfler, P.S. and Eisenman, R.N. 1999. Sin meets NuRD and other tails of repression. Cell 99: 447–450.Google Scholar
  80. Kobayashi, N., Boyer, T.G. and Berk, A.J. 1995. A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol. Cell. Biol. 15: 6465–6473.Google Scholar
  81. Koleske, A.J. and Young, R.A. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368: 466–469.Google Scholar
  82. Kouzarides, T. 2000. Acetylation: a regulatory modification to riyal phosphorylation? EMBO J. 19: 1176–1179.Google Scholar
  83. Kraemer, S.M., Ranallo, R.T., Ogg, R.C. and Stargell, L.A. 2001. TFIIA interacts with TFIID via association with TATA-binding protein and TAF40. Mol. Cell. Biol. 21: 1737–1746.Google Scholar
  84. Krebs, J.E., Kuo, M.H., Allis, C.D., Peterson, C.L. 1999. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev. 13: 1412–1421.Google Scholar
  85. Kretzschmar, M., Kaiser, K., Lottspeich, F. and Meisterernst, M. 1994. A novel mediator of class II gene transcription with homology to viral immediate-early transcriptional regulators. Cell 78: 525–534.Google Scholar
  86. Kuo, M.H., Zhou, J., Jambeck, P., Churchill, M.E. and Allis, C.D. 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12: 627–639.Google Scholar
  87. Kuras, L., Kosa, P., Mencia, M. and Struhl, K. 2000. TAF-Containing and TAF-independent forms of transcriptionally active TBP in vivo. Science 288: 1244–1248.Google Scholar
  88. Lagrange, T., Kapanidis, A.N., Tang, H., Reinberg D. and Ebright, R.H. 1998. New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev. 12: 34–44.Google Scholar
  89. Larkin, R.M., Hagen, G. and Guilfoyle T.J. 1999. Arabidopsis thaliana RNA polymerase II subunits related to yeast and human RPB5. Gene 231: 41–47.Google Scholar
  90. Larschan, E. and Winston, F. 2001. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev. 15: 1946–1956.Google Scholar
  91. Lee, T.I., Causton, H.C., Holstege, FC., Shen, W.C., Hannett, N., Jennings, E.G., Winston, F., Green, M.R. and Young, R.A. 2000. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405: 701–704.Google Scholar
  92. Lemon, B. and Tjian, R. 2000. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14: 2551–2569.Google Scholar
  93. Li, Y.F., Le Gourierrec, J., Torki, M., Kim, Y.J., Guerineau, F. and Zhou, D.X. 1999. Characterization and functional analysis of Arabidopsis. TFIIA reveal that the evolutionarily unconserved region of the large subunit has a transcription activation domain. Plant Mol. Biol. 39: 515–525.Google Scholar
  94. Li, X.Y., Bhaumik, S.R. and Green, M.R. 2000. Distinct classes of yeast promoters revealed by differential TAF recruitment. Science 288: 1242–1244.Google Scholar
  95. Lieberman, P.M. and Berk, A.J. 1994. A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA-promoter DNA complex formation. Genes Dev. 8: 995–1006.Google Scholar
  96. Liu, Y., Ranish, J.A., Aebersold, R. and Hahn, S. 2001. Yeast nuclear extract contains two major forms of RNA polymerase II mediator complexes. J. Biol. Chem. 276: 7169–7175.Google Scholar
  97. Lorch, Y., Beve, J., Gustafsson, C.M., Myers, L.C. and Kornberg, R.D. 2000. Mediator-nucleosome interaction. Mol. Cell 6: 197–201.Google Scholar
  98. Malik, S. and Roeder, R.G. 2000. Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem. Sci. 25: 277–283.Google Scholar
  99. Malik, S., Guermah, M. and Roeder, R.G. 1998. A dynamic model for PC4 coactivator function in RNA polymerase II transcription. Proc. Natl. Acad. Sci. USA 95: 2192–2197.Google Scholar
  100. Malik, S., Gu, W., Wu, W., Qin, J. and Roeder, R.G. 2000. The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol. Cell 5: 753–760.Google Scholar
  101. Martinez, E., Chiang, C.M., Ge, H. and Roeder, R.G. 1994. TATA-binding protein-associated factor(s) in TFIID function through the initiator to direct basal transcription from a TATA-less class II promoter. EMBO J. 13: 3115–3126.Google Scholar
  102. Martinez, E., Zhou, Q., L'Etoile, N.D., Oelgeschläger, T., Berk, A.J. and Roeder, R.G. 1995. Core promoter-specific function of a mutant transcription factor TFIID defective in TATA-box binding. Proc. Natl. Acad. Sci. USA 92: 11864–11868.Google Scholar
  103. Martinez, E., Ge, H., Tao, Y., Yuan, C.X., Palhan, V. and Roeder, R.G. 1998a. Novel cofactors and TFIIA mediate functional core promoter selectivity by the human TAFII150-containing TFIID complex. Mol. Cell. Biol. 18: 6571–6583.Google Scholar
  104. Martinez, E., Kundu, T.K., Fu, J. and Roeder, R.G. 1998b. A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J. Biol. Chem. 273: 23781–23785.Google Scholar
  105. Martinez, E., Palhan, V.B., Tjernberg, A., Lymar, E.S., Gamper, A.M., Kundu, T.K., Chait, B.T. and Roeder, R.G. 2001. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol. Cell. Biol. 21: 6782–6795.Google Scholar
  106. Matangkasombut, O., Buratowski, R.M., Swilling, N.W. and Buratowski, S. 2000. Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev. 14: 951–962.Google Scholar
  107. Merika, M. and Thanos, D. 2001. Enhanceosomes. Curr. Opin. Genet. Dev. 11: 205–208.Google Scholar
  108. Metzger, D., Scheer, E., Soldatov, A. and Tora, L. 1999. Mammalian TAF(II)30 is required for cell cycle progression and specific cellular differentiation programmes. L EMBO J. 18: 4823–4834.Google Scholar
  109. Mizuguchi, G., Vassilev, A., Tsukiyama, T., Nakatani, Y. and Wu, C. 2001. ATP-dependent nucleosome remodeling and histone hyperacetylation synergistically facilitate transcription of chromatin. J. Biol. Chem. 276: 14773–14783Google Scholar
  110. Mizzen, C.A., Yang, X.J., Kokubo, T., Brownell, J.E., Bannister, A.J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S.L., Kouzarides, T., Nakatani, Y. and Allis, C.D. 1996. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261–1270.Google Scholar
  111. Moqtaderi, Z., Bai, Y., Poon, D., Weil, P.A. and Struhl, K. 1996. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383: 188–191.Google Scholar
  112. Murfett, J., Wang, X.J., Hagen, G. and Guilfoyle, T.J. 2001. Identification of arabidopsis histone deacetylase hda6 mutants that affect transgene expression. Plant Cell 13: 1047–1061.Google Scholar
  113. Myers, L.C. and Kornberg, R.D. 2000. Mediator of transcriptional regulation. Annu. Rev. Biochem. 69: 729–749.Google Scholar
  114. Näär, A.M., Beaurang, P.A., Robinson, K.M., Oliner, J.D., Avizonis, D., Scheek, S., Zwicker, J., Kadonaga, J.T. and Tjian, R. 1998. Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev. 12: 3020–3031.Google Scholar
  115. Näär, A.M., Lemon, B.D., Tjian, R. 2001. Transcriptional coactivator complexes. Annu. Rev. Biochem. 70: 475–501.Google Scholar
  116. Ng, H.H. and Bird, A. 2000. Histone deacetylases: silencers for hire. Trends Biochem. Sci. 25: 121–126.Google Scholar
  117. Nielsen, S.J., Schneider, R., Bauer, V.M., Bannister, A.J., Morrison, A., O'Carroll, D., Firestein, R., Cleary, M., Jenuwein, T., Herrera, R.E. and Kouzarides, T. 2001. Rb targets histone H3 methylation and HP1 to promoters. Nature 412: 561–565.Google Scholar
  118. Nikolov, D.B., Chen, H., Halay, E.D., Usheva, A.A., Hisatake, K., Lee, D.K., Roeder, R.G., Burley, S.K. 1995. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377: 119–128.Google Scholar
  119. Nogales, E. 2000. Recent structural insights into transcription preinitiation complexes. J. Cell. Sci. 113: 4391–4397.Google Scholar
  120. O'Brien, T. and Tjian, R. 2000. Different functional domains of TAFII250 modulate expression of distinct subsets of mammalian genes. Proc. Natl. Acad. Sci. USA 97: 2456–2461.Google Scholar
  121. Oelgeschläger, T., Chiang, C.M. and Roeder, R.G. 1996. Topology and reorganization of human TFIID-promoter complex. Nature 382: 735–738.Google Scholar
  122. Oelgeschläger T., Tao, Y., Kang, Y.K. and Roeder, R.G. 1998. Transcription activation via enhanced preinitiation complex assembly in a human cell-free system lacking TAFII S. Mol. Cell. 1: 925–9Google Scholar
  123. Ogas, J., Kaufmann, S., Henderson, J. and Somerville, C. 1999. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc. Natl. Acad. Sci. USA 96: 13839–13844.Google Scholar
  124. Ogryzko, V.V., Kotani, T., Zhang, X., Schiltz, R.L., Howard, T., Yang, X.J., Howard, B.H., Qin, J. and Nakatani, Y. 1998. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94: 35–44.Google Scholar
  125. Orphanides, G., Lagrange T. and Reinberg, D. 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10: 2657–2683.Google Scholar
  126. Ozer, J., Moore, P.A., Bolden, A.H., Lee, A., Rosen, C.A. and Lieberman, P.M. 1994. Molecular cloning of the small (gamma) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev. 8: 2324–2335.Google Scholar
  127. Ozer, J., Mitsouras, K., Zerby, D., Carey, M. and Lieberman, P.M. 1998a. Transcription factor IIA derepresses TATA-binding protein (TBP)-associated factor inhibition of TBP-DNA binding. J. Biol. Chem. 273: 14293–14300.Google Scholar
  128. Ozer, J., Lezina, L.E., Ewing, J., Audi S. and Lieberman, P.M. 1998b. Association of transcription factor IIA with TATA binding protein is required for transcriptional activation of a subset of promoters and cell cycle progression in Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 2559–2570.Google Scholar
  129. Ozer, J., Moore, P.A. and Lieberman, P.M. 2000. A testis-specific transcription factor IIA (TFIIAtau) stimulates TATA-binding protein-DNA binding and transcription activation. J. Biol. Chem. 275: 122–128.Google Scholar
  130. Park, J.M., Gim, B.S., Kim, J.M., Yoon, J.H., Kim, H.S., Kang, J.G. and Kim, Y.J. 2001. Drosophila Mediator complex is broadly utilized by diverse gene-specific transcription factors at different types of core promoters. Mol. Cell. Biol. 21: 2312–2323.Google Scholar
  131. Patikoglou, G. and Burley, S.K. 1997. Eukaryotic transcription factor-DNA complexes. Annu. Rev. Biomol. Struct. 26: 289–325.Google Scholar
  132. Pham, A.D. and Sauer, F. 2000. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289: 2357–2360.Google Scholar
  133. Pugh, B.F. and Tjian, R. 1990. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61: 1187–1197.Google Scholar
  134. Pugh, B.F. and Tjian, R. 1991. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 5: 1935–1945.Google Scholar
  135. Roeder, R.G. 1996. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21: 327–335.Google Scholar
  136. Roeder, R.G. 1998. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. Cold Spring Harbor Symp. Quant. Biol. 63: 201–218.Google Scholar
  137. Roth, S.Y., Denu, J.M. and Allis, C.D. 2001. Histone acetyltransferases. Annu. Rev. Biochem. 70: 81–120.Google Scholar
  138. Sawadogo, M. and Roeder, R.G. 1985. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43: 165–175.Google Scholar
  139. Sauer, F., Hansen, S.K. and Tjian, R. 1995a. Multiple TAFIIs directing synergistic activation of transcription. Science 270: 1783–1788.Google Scholar
  140. Sauer, F., Hansen, S.K. and Tjian, R. 1995b. DNA template and activator-coactivator requirements for transcriptional synergism by Drosophila bicoid. Science 270: 1825–1828.Google Scholar
  141. Schultz, P., Fribourg, S., Poterszman, A., Mallouh, V., Moras, D. and Egly, J.M. 2000. Molecular structure of human TFIIH. Cell 102: 599–607.Google Scholar
  142. Selleck, W., Howley, R., Fang, Q., Podolny, V., Fried, M.G., Buratowski, S. and Tan, S. 2001. A histone fold TAF octamer within the yeast TFIID transcriptional coactivator. Nat. Struct. Biol. 8: 695–700.Google Scholar
  143. Shen, W.C. and Green, M.R. 1997. Yeast TAF(II)145 functions as a core promoter selectivity factor, not a general coactivator. Cell 90: 615–624.Google Scholar
  144. Shen, X., Mizuguchi, G., Hamiche, A. and Wu, C. 2000. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406: 541–544.Google Scholar
  145. Shykind, B.M., Kim, J. and Sharp, P.A. 1995. Activation of the TFIID-TFIIA complex with HMG-2. Genes Dev. 9: 1354–1365.Google Scholar
  146. Shykind, B.M., Kim, J., Stewart, L., Champoux, J.J. and Sharp, P.A. 1997. Topoisomerase I enhances TFIID-TFIIA complex assembly during activation of transcription. Genes Dev. 11: 397–407.Google Scholar
  147. Smale, S.T. 1997. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim. Biophys. Acta 1351: 73–88.Google Scholar
  148. Smith, R.L. and Johnson, A.D. 2000. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem. Sci. 25: 325–330.Google Scholar
  149. Solow, S., Salunek, M., Ryan, R. and Lieberman, P.M. 2001. TAF(II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J. Biol. Chem. 276: 15886–15892.Google Scholar
  150. Sterner, D.E. and Berger, S.L. 2000. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64: 435–459.Google Scholar
  151. Sterner, D.E., Grant, P.A., Roberts, S.M., Duggan, L.J., Belotserkovskaya, R., Pacella, L.A., Winston, F., Workman, J.L. and Berger, S.L. 1999. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19: 86–98.Google Scholar
  152. Stockinger, E.J., Mao, Y., Regier, M.K., Triezenberg, S.J. and Thomashow, M.F. 2001. TranscriPtional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucl. Acids Res. 29: 1524–1533.Google Scholar
  153. Strahl, B.D. and Allis, C.D. 2000. The language of covalent histone modifications. Nature 403: 41–45.Google Scholar
  154. Sun, X., Ma, D., Sheldon, M., Yeung, K. and Reinberg, D. 1994. Reconstitution of human TFIIA activity from recombinant polypeptides: a role in TFIID-mediated transcription. Genes Dev. 8: 2336–2348.Google Scholar
  155. Tan, S., Hunziker, Y., Sargent, D.F. and Richmond, T.J. 1996. Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381: 127–1251.Google Scholar
  156. Tansey, W.P. 2001. Transcriptional activation: risky business. Genes Dev. 15: 1045–1050.Google Scholar
  157. Thompson, C.M. and Young, R.A. 1995. General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl. Acad. Sci. USA 92: 4587–4590.Google Scholar
  158. Thompson, C.M., Koleske, A.J., Chao, D.M. and Young, R.A. 1993. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73: 1361–1375.Google Scholar
  159. Tsai, F.T. and Sigler, P.B. 2000. Structural basis of preinitiation complex assembly on human pol II promoters. EMBO J. 19: 25–36.Google Scholar
  160. Upadhyaya, A.B., Lee, S.H. and DeJong, J. 1999. Identification of a general transcription factor TFIIA?/? homolog selectively expressed in testis. J. Biol. Chem. 274: 18040–18048.Google Scholar
  161. Utley, R.T., Ikeda, K., Grant, P.A., Cote, J., Steger, D.J., Eberharter, A., John, S. and Workman, J.L. 1998. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394: 498–502.Google Scholar
  162. Verbsky, M.L. and Richards, E.J. 2001. Chromatin remodeling in plants. Curr. Opin. Plant Biol. 4: 494–500.Google Scholar
  163. Verrijzer, C.P. and Tjian, R. 1996. TAFs mediate transcriptional activation and promoter selectivity. Trends Biochem. Sci. 21: 338–339.Google Scholar
  164. Vignali, M., Hassan, A.H., Neely, K.E. and Workman, J.L. 2000. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 20: 1899–1910.Google Scholar
  165. Walker, S.S., Reese, J.C., Apone, L.M. and Green, M.R. 1996. Transcription activation in cells lacking TAFIIs. Nature 383: 185–188.Google Scholar
  166. Wang, G., Cantin, G.T., Stevens, J.L. and Berk, A.J. 2001a. Characterization of mediator complexes from HeLa cell nuclear extract. Mol. Cello Biol. 21: 4604–4613.Google Scholar
  167. Wang, H., Huang, Z.Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B.D., Briggs, S.D., Allis, C.D., Wang, J., Tempst, P. and Zhang, Y. 2001b. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293: 853–857.Google Scholar
  168. Wang, L., Liu, L. and Berger, S.L. 1998. Critical residues for histone acetylation by r Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12: 640–653Google Scholar
  169. Wang, W., Gralla, J.D. and Carey, M. 1992. The acidic activator GAL4-AH can stimulate polymerase II transcription by promoting assembly of a closed complex requiring TFIID Land TFIIA. Genes Dev. 6: 1716–1727.Google Scholar
  170. Wieczorek, E., Brand, M., Jacq, X., Tora, L. 1998. Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II. Nature 393: 187–191.Google Scholar
  171. Willy, P.J., Kobayashi, R. and Kadonaga, J.T. 2000. A basal transcription factor that activates or represses transcription. Science 290: 982–985.Google Scholar
  172. Workman, J.L. and Kingston R.E. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67: 545–579.Google Scholar
  173. Workman, J.L. and Roeder, R.G. 1987. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51: 613–622.Google Scholar
  174. Workman, J.L., Abmayr, S.M., Cromlish, W.A. and Roeder, R.G. 1988. Transcriptional regulation by the immediate early protein of pseudorabies virus during in vitro nucleosome assembly. Cell 55: 211–219.Google Scholar
  175. Wu, S.Y., Kershnar, E. and Chiang, C.M. 1998. TAFII-independent activation mediated by human TBP in the presence of the positive cofactor PC4. EMBO J. 17: 4478–4490.Google Scholar
  176. Wu, C.H., Madabusi, L., Nishioka, H., Emanuel, P., Sypes, M., Arkhipova, I. and Gilmour, D.S. 2001. Analysis of core promoter sequences located downstream from the TATA element in the hsp70 promoter from Drosophila melanogaster. Mol. Cell. Biol. 21: 1593–1602.Google Scholar
  177. Xie, X., Kokubo, T., Cohen, S.L., Mirza, U.A., Hoffmann, A., Chait, B.T., Roeder, R.G., Nakatani, Y. and Burley, S.K. 1996. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380: 316–322.Google Scholar
  178. Xu, W., Edmondson, D.G. and Roth, S.Y. 1998. Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol. Cell. Biol. 18: 5659–5669.Google Scholar
  179. Xu,W., Edmondson, D.G., Evrard, Y.A., Wakamiya, M., Behringer, R.R. and Roth, S,Y. 2000. Loss of Gcn512 leads to increased apoptosis and mesodermal defects during mouse development. Nat. Genet. 26: 229–232.Google Scholar
  180. Yamauchi, T., Yamauchi, J., Kuwata, T., Tamura, T., Yamashita, T., Bae, N., Westphal, H., Ozato, K. and Nakatani, Y. 2000. Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc. Natl. Acad. Sci. USA 97: 11303–11306.Google Scholar
  181. Yang, X.J., Ogryzko, V.V., Nishikawa, J., Howard, B.H. and Nakatani, Y. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382: 319–324.Google Scholar
  182. Yudkovsky, N., Ranish, J.A. and Hahn, S. 2000. A transcription reinitiation intermediate that is stabilized by activator. Nature 408: 225–229.Google Scholar
  183. Zawel, L., Kumar, K.P. and Reinberg, D. 1995. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev. 9: 1479–1490.Google Scholar
  184. Zhou, Q., Lieberman, P.M., Boyer, T.G. and Berk, A.J. 1992. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev. 6: 1964–1974.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ernest Martinez
    • 1
  1. 1.Department of BiochemistryUniversity of CaliforniaRiversideU.S.A

Personalised recommendations