Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 34, Issue 5, pp 397–406 | Cite as

Impaired Cardiac Mitochondrial Membrane Potential and Respiration in Copper-Deficient Rats

  • Xiulian Chen
  • Dianne B. Jennings
  • Denis M. MedeirosEmail author
Article

Abstract

Cardiac mitochondrial respiration, ATP synthase activity, and membrane potential and intactness were evaluated in copper-deficient rats. In the presence of NADH, both copper-deficient and copper-adequate mitochondria had very low oxygen consumption rates, indicating membrane intactness. However copper-deficient mitochondria had significantly lower oxygen consumption rates with NADH than did copper-adequate mitochondria. Copper-deficient mitochondria had significantly lower membrane potential than did copper-adequate mitochondria using fluorescent dyes. Copper-deficient mitochondria had significantly lower state 3 oxygen consumption rates and were less sensitive to inhibition by oligomycin, an ATP synthase inhibitor. Copper-deficient and copper-adequate mitochondria responded similiarly to CCCP. No difference was observed in mitochondrial ATPase activity between copper-deficient and copper-adequate rats using submitochondrial particles. We conclude that cardiac mitochondrial respiration is compromised in copper-deficient rats, and may be related to an altered ATP synthase complex and/or a decreased mitochondrial membrane potential.

Copper deficiency mitochondria ATP synthase oligomycin membrane potential heart 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Catterall, W. A., and Pedersen, P. L. (1971). J. Biol. Chem. 246, 4987–4994.Google Scholar
  2. Chao, J. C., Medeiros, D. M., Altschuld, R. A., and Hohl, C. M. (1993). Comp. Biochem. Physiol. Comp. Physiol. 104A(1), 103–108.Google Scholar
  3. Chao, D. C., Medeiros, D. M., Davidson, J., and Shiry, L. (1994). J. Nutr. 124, 789–803.Google Scholar
  4. Golden, T. R., and Pedersen, P. L. (1998). Biochemistry 37, 13871–13881.Google Scholar
  5. Johnson, L. V., Walsh, M. L., and Chen, L. B. (1980). Proc. Natl. Acad. Sci. U.S.A. 77(2), 990–994.Google Scholar
  6. Lisa, F. D., Blank, P. S., Colonna, R., Ganbassi, G., Silverman, H. S., Stern, M. D., and Hansford, R. G. (1995). J. Physiol. 486(1), 1–13.Google Scholar
  7. Mao, S., Leone, T. C., Kelly, D. P., and Medeiros, D. M. (2000). J. Nutr. 130, 2143–2150.Google Scholar
  8. Marklund, S., and Marklund, G. (1974). Eur. J. Biochem. 47, 469–474.Google Scholar
  9. Matz, J. M., Saari, J. T., and Bode, A. M. (1995). J. Nutr. Biochem. 6, 644–652.Google Scholar
  10. Medeiros, D. M., Bagby, D., Overka, G., and McCormick, R. (1991a). J. Nutr. 121, 815–824.Google Scholar
  11. Medeiros, D. M., Liao, Z., and Hamlin, R. L. (1991b). J. Nutr. 121, 1026–1034.Google Scholar
  12. Medeiros, D. M., Shiry, L., and Samelman, T. (1997). Comp. Biochem. Physial. 117A,1:77–87.Google Scholar
  13. Mela, L., and Seitz, S. (1979). Meth. Enzymol. 55, 39–51.Google Scholar
  14. Nuydens, R., Novalbos, J., Dispersyn, G., Weber, C., Borgers, M., and Geerts, H. (1999). J. Neurosci. Methods. 92, 153–159.Google Scholar
  15. Pedersen, P. L., Hullihen, J., and Wehrle, J. P. (1981). J. Biol. Chem. 256, 1362–1369.Google Scholar
  16. Prohaska, J. R. (1983). J. Nutr. 113, 2048–2058.Google Scholar
  17. Reers, M., Smith, T.W., and Chen, L. B. (1991). Biochemistry 30, 4480–4486.Google Scholar
  18. Richwood, D., Wilson, M. T., and Darley-Usmar (1987). In Mitochondria, a Practical Approach: Isolation and Characteristics of Intact Mitochondria (Darley-Usmar, Richwood, D., and Wilson, M. T., eds.), IRL Press, Washington, DC, pp. 125–175.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Xiulian Chen
    • 1
  • Dianne B. Jennings
    • 1
  • Denis M. Medeiros
    • 1
    Email author
  1. 1.Department of Human NutritionKansas State UniversityManhattan

Personalised recommendations