Journal of Bioenergetics and Biomembranes

, Volume 34, Issue 5, pp 363–371 | Cite as

Menkes Copper-Translocating P-type ATPase (ATP7A): Biochemical and Cell Biology Properties, and Role in Menkes Disease

  • Ilia Voskoboinik
  • James Camakaris


The Menkes copper-translocating P-type ATPase (ATP7A; MNK) is a ubiquitous protein that regulates the absorption of copper in the gastrointestinal tract. Inside cells the protein has a dual function: it delivers copper to cuproenzymes in the Golgi compartment and effluxes excess copper. The latter property is achieved through copper-dependent vesicular trafficking of the Menkes protein to the plasma membrane of the cell. The trafficking mechanism and catalytic activity combine to facilitate absorption and intercellular transport of copper. The mechanism of catalysis and copper-dependent trafficking of the Menkes protein are the subjects of this review. Menkes disease, a systemic copper deficiency disorder, is caused by mutations in the gene encoding the Menkes protein. The effect of these mutations on the catalytic cycle and the cell biology of the Menkes protein, as well as predictions of the effect of particular mutant MNKs on observed Menkes disease symptoms will also be discussed.

Menkes protein Menkes disease copper P-type ATPase trafficking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bissig, K. D., Wunderli-Ye, H., Duda, P. W., and Solioz, M. (2001). Biochem. J. 357, 217–223.Google Scholar
  2. Camakaris, J., Danks, D. M., Ackland, L., Cartwright, E., Borger, P., and Cotton, R., G. (1980). Biochem. Genet. 18, 117–131.Google Scholar
  3. Camakaris, J., Petris, M. J., Bailey, L., Shen, P., Lockhart, P., Glover, T. W., Barcroft, C., Patton, J., and Mercer, J. F. (1995). Hum. Mol. Genet. 4, 2117–2123.Google Scholar
  4. Camakaris, J., Voskoboinik, I., and Mercer, J. F. (1999). Biochem. Biophys. Res. Commun. 261, 225–232.Google Scholar
  5. Chelly, J., Tumer, Z., Tonnesen, T., Petterson, A., Ishikawa Brush, Y., Tommerup, N., Horn, N., and Monaco, A. P. (1993). Nat. Genet. 3, 14–19.Google Scholar
  6. Dagenais, S. L., Adam, A. N., Innis, J. W., and Glover, T. W. (2001). Am. J. Hum. Genet. 69, 420–427.Google Scholar
  7. Daly, S. E., Lane, L. K., and Blostein, R. (1996). J. Biol. Chem. 271, 23683–23689.Google Scholar
  8. Danks, D. M. (1995). In: The Metabolic Basis of Inherited Disease (Eds: Scriver, C. R., Beaudet, A. L., Sly, W. V., and Valle, D.). McGraw-Hill, New York, p. 2211–2235.Google Scholar
  9. Fan, B., Grass, G., Rensing, C., and Rosen, B. P. (2001). Biochem. Biophys. Res. Commun. 286, 414–418.Google Scholar
  10. Forbes J. R., and Cox, D. W. (2000). Hum. Mol. Genet. 9, 1927–1935.Google Scholar
  11. Forbes, J. R., Hsi, G., and Cox, D.W. (1999). J. Biol. Chem. 274, 12408–12413.Google Scholar
  12. Francis, M. J., Jones, E. E., Levy, E. R., Martin, R. L., Ponnambalam, S., and Monaco, A. P. (1999). J. Cell. Sci. 112, 1721–1732.Google Scholar
  13. Francis, M. J., Jones, E. E., Levy, E. R., Ponnambalam, S., Chelly, J., and Monaco, A. P. (1998). Hum. Mol. Genet. 7, 1245–1252.Google Scholar
  14. Fu, D., Beeler, T. J., and Dunn, T. M. (1995). Yeast 11, 283–292.Google Scholar
  15. Goodyer, I. D., Jones, E. E., Monaco, A. P., and Francis, M. J. (1999). Hum. Mol. Genet. 8, 1473–1478.Google Scholar
  16. Gu, Y. H., Kodama, H., Murata, Y., Mochizuki, D., Yanagawa, Y., Ushijima, H., Shiba, T., and Lee, C. C. (2001). Am. J. Med. Genet. 99, 217–222.Google Scholar
  17. Hamza, I., Faisst, A., Prohaska, J., Chen, J., Gruss, P., and Gitlin, J. D. (2001). Proc. Natl. Acad. Sci. U. S. A. 98, 6848–6852.Google Scholar
  18. Iida, M., Terada, K., Sambongi, Y., Wakabayashi, T., Miura, N., Koyama, K., Futai, M., and Sugiyama, T. (1998). FEBS Lett. 428, 281–285.Google Scholar
  19. Irani, A. N., Malhi, H., Slehria, S., Gorla, G. R., Volenberg, I., Schilsky, M. L., and Gupta, S. (2001). Mol. Ther. 3, 302–309.Google Scholar
  20. Kaler, S. G. (1998). Am. J. Clin. Nutr. 67(Suppl.), 1029–1034S.Google Scholar
  21. Kaler, S. G., Das, S., Levinson, B., Goldstein, D. S., Holmes, C. S., Patronas, N. J., Packman, S., and Gahl, W. A. (1996). Biochem. Mol. Med. 57, 37–46.Google Scholar
  22. Larin, D., Mekios, C., Das, K., Ross, B., Yang, A. S., and Gilliam, T. C. (1999). J. Biol. Chem. 274, 28497–28504.Google Scholar
  23. Linder, M. C., and Hazegh Azam, M. (1996). Am. J. Clin. Nutr. 63, 797S–811S.Google Scholar
  24. Lutsenko, S., Petrukhin, K., Cooper, M. J., Gilliam, C. T., and Kaplan, J. H. (1997). J. Biol. Chem. 272, 18939–18944.Google Scholar
  25. Mercer, J. F., Livingston, J., Hall, B., Paynter, J. A., Begy, C., Chandrasekharappa, S., Lockhart, P., Grimes, A., Bhave, M., Siemieniak, D., and Glover, T. W. (1993). Nat. Genet. 3, 20–25.Google Scholar
  26. Mitra, B., and Sharma, R. (2001). Biochemistry 40, 7694–7699.Google Scholar
  27. Moller, L. B., Tumer, Z., Lund, C., Petersen, C., Cole, T., Hanusch, R., Seidel, J., Jensen, L. R., and Horn, N. (2000). Am. J. Hum. Genet. 66, 1211–1220.Google Scholar
  28. Mollman, J. E., and Pleasure, D. E. (1980). J. Biol. Chem. 255, 569–574.Google Scholar
  29. Oh, W. J., Kim, E. K., Ko, J. H., Yoo, S. H., Hahn, S. H., and Yoo, O. J. (2002). Eur. J. Biochem. 269, 2151–2161.Google Scholar
  30. Oh, W. J., Kim, E. K., Park, K. D., Hahn, S. H., and Yoo, O. J. (1999). Biochem. Biophys. Res. Commun. 259, 206–211.Google Scholar
  31. Payne, A. S., and Gitlin, J. D. (1998). J. Biol. Chem. 273, 3765–3770.Google Scholar
  32. Paynter, J. A., Grimes, A., Lockhart, P., and Mercer, J. F. (1994). FEBS Lett. 351, 186–190.Google Scholar
  33. Petris, M. J., Camakaris, J., Greenough, M., LaFontaine, S., and Mercer, J. F. B. (1998). Hum. Mol. Genet. 7, 2063–2071.Google Scholar
  34. Petris, M. J., Camakaris, J., Voskoboinik, I., Kim, B.-E., Smith, K., and Mercer, J. F. (2002). In 11th International Symposium on Trace Elements in Man and Medicine, June 2-6, Berkeley, CA, p. 108.Google Scholar
  35. Petris, M. J., and Mercer, J. F. (1999). Hum. Mol. Genet. 8, 2107–2115.Google Scholar
  36. Petris, M. J., Mercer, J. F., Culvenor, J. G., Lockhart, P., Gleeson, P. A., and Camakaris, J. (1996). EMBO J. 15, 6084–6095.Google Scholar
  37. Rad, M. R., Kirchrath, L., and Hollenberg, C. P. (1994). Yeast 10, 1217–1225.Google Scholar
  38. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V.C., and O'Halloran, T. V. (1999). Science 284, 805–808.Google Scholar
  39. Rensing, C., Fan, B., Sharma, R., Mitra, B., and Rosen, B. P. (2000). Proc. Natl. Acad. Sci. U.S.A. 97, 652–656.Google Scholar
  40. Rensing, C., Mitra, B., and Rosen, B. P. (1997). Proc. Natl. Acad. Sci. U.S.A. 94, 14326–14331.Google Scholar
  41. Saari, J. T. (2000). Can. J. Physiol. Pharmacol. 78, 848–855.Google Scholar
  42. Schilsky, M. L. (1994). Hepatology 20, 529–533.Google Scholar
  43. Seidel, J., Birk Moller, L., Mentzel, H.-J., Kauf, E., Vogt, S., Patzer, S., Wollina, U., Zintl, F., and Horn, N. (2001). Cell. Mol. Biol. 47, 141–148.Google Scholar
  44. Shiraishi, E., Inouhe, M., Joho, M., and Tohoyama, H. (2000). Curr. Genet. 37, 79–86.Google Scholar
  45. Strausak, D., La Fontaine, S., Hill, J., Firth, S. D., Lockhart, P. J., and Mercer, J. F. (1999). J. Biol. Chem. 274, 11170–11177.Google Scholar
  46. Tsai, K. J., and Linet, A. L. (1993). Arch. Biochem. Biophys. 305, 267–270.Google Scholar
  47. Tsivkovskii, R., Eisses, J. F., Kaplan, J. H., and Lutsenko, S. (2002). J. Biol. Chem. 277, 976–983.Google Scholar
  48. Tsivkovskii, R., MacArthur, B. C., and Lutsenko, S. (2001). J. Biol. Chem. 276, 2234–2242.Google Scholar
  49. Tumer, Z., Lund, C., Tolshave, J., Vural, B., Tonnesen, T., and Horn, N. (1997). Am. J. Hum. Genet. 60, 63–71.Google Scholar
  50. Tumer, Z., Moller, L. B., and Horn, N. (1999). Adv. Exp. Med. Biol. 448, 83–95.Google Scholar
  51. Vanderwerf, S. M., Cooper, M. J., Stetsenko, I. V., and Lutsenko, S. (2001). J. Biol. Chem. 276, 36289–36294.Google Scholar
  52. Voskoboinik, I., Brooks, H., Smith, S., Shen, P., and Camakaris, J. (1998). FEBS Lett. 435, 178–182 Molecular Properties of the Menkes Copper P-Type ATPase 371 Google Scholar
  53. Voskoboinik, I., Greenough, M., La Fontaine, S., Mercer, J. F., and Camakaris, J. (2001a). Biochem. Biophys. Res. Commun. 281, 966–970.Google Scholar
  54. Voskoboinik, I., Mar, J., Strausak, D., and Camakaris, J. (2001b). J. Biol. Chem. 276, 28620–28627.Google Scholar
  55. Voskoboinik, I., Strausak, D., Greenough, M., Brooks, H., Petris, M., Smith, S., Mercer, J. F., and Camakaris, J. (1999). J. Biol. Chem. 274, 22008–22012.Google Scholar
  56. Vulpe, C., Levinson, B., Whitney, S., Packman, S., and Gitschier, J. (1993). Nat. Genet. 3, 7–13.Google Scholar
  57. Yoshida, Y., Tokusashi, Y., Lee, G. H., and Ogawa, K. (1996). Gastroenterology 111, 1654–1660.Google Scholar
  58. Yuan, D. S., Dancis, A., and Klausner, R. D. (1997). J. Biol. Chem. 272, 25787–25793.Google Scholar
  59. Yuan, D. S., Stearman, R., Dancis, A., Dunn, T., Beeler, T., and Klausner, R. D. (1995). Proc. Natl. Acad. Sci. U.S.A. 92, 2632–2636.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Department of GeneticsThe University of MelbourneParkvilleAustralia

Personalised recommendations