Advertisement

Journal of Biological Physics

, Volume 28, Issue 4, pp 655–672 | Cite as

Self-Organization in Living Cells: Networks of Protein Machines and Nonequilibrium Soft Matter

  • A.S. Mikhailov
  • B. Hess
Article

Abstract

Microscopic self-organization phenomena inside a living cell should not represent merely a reduced copy of self-organization in macroscopic systems. A cell is populated by active protein machines that communicate via small molecules diffusing through the cytoplasm. Mutual synchronization of machine cycles can spontaneously develop in such networks – an effect which is similar to coherent laser generation. On the other hand, an interplay between reactions, diffusion and phase transitions in biological soft matter may lead to the formation of stationary or traveling nonequilibrium nanoscale structures.

conformational relaxation diffusion enzymes microvolumes nonequilibrium nanostructures phase transitions synchronization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schrödinger, E.: What is Life? A Physical Aspect of a Living Cell, Cambridge Univ. Press, 1944.Google Scholar
  2. 2.
    Nicolis, G. and Prigogine, I.: Self-Organization in Nonequilibrium Systems, Wiley, New York, 1977.Google Scholar
  3. 3.
    Haken, H.: Synergetics: An Introduction, Springer, Berlin, 1978.Google Scholar
  4. 4.
    Murray, J.D.: Mathematical Biology, Springer, Berlin, 1989.Google Scholar
  5. 5.
    Hess, B.: Quart. Rev. Biophys. 30 (1997), 121.Google Scholar
  6. 6.
    Mikhailov, A.S.: Foundations of Synergetics I, Springer, Berlin 1990, 2nd revised edition, 1995.Google Scholar
  7. 7.
    Zhabotinsky, A.M. and Zaikin, A.N.: Nature 225 (1970), 535.Google Scholar
  8. 8.
    Winfree, A.T.: Science 175 (1972), 634.Google Scholar
  9. 9.
    Lechleiter, J., Girard, S., Peralta, E. and Clapman, D.: Science 252 (1991), 123.Google Scholar
  10. 10.
    Petty, H.R., Worth, R.G. and Kindzelskii, A.L.: Phys. Rev. Lett. 84 (2000), 2754.Google Scholar
  11. 11.
    Hess, B. and Mikhailov, A.S.: Science 264 (1994), 223.Google Scholar
  12. 12.
    Hess, B. and Mikhailov, A.S.: Ber. Bunsenges. Phys. Chem. 98 (1994), 1198.Google Scholar
  13. 13.
    Hess, B. and Mikhailov, A.S.: J. Theor. Biol. 176 (1995), 181.Google Scholar
  14. 14.
    Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms, Cambridge University Press, Cambridge, 1996.Google Scholar
  15. 15.
    Haken, H.: Rev. Mod. Phys. 47 (1975), 67.Google Scholar
  16. 16.
    Hess, B. and Mikhailov, A.S.: Biophys. Chem. 58 (1996), 365.Google Scholar
  17. 17.
    Mikhailov, A.S. and Hess, B.: J. Phys. Chem. 100 (1996), 19059.Google Scholar
  18. 18.
    Stange, P., Mikhailov, A.S. and Hess, B.: J. Phys. Chem. B 102 (1998), 6273.Google Scholar
  19. 19.
    Stange, P., Mikhailov, A.S. and Hess, B.: J. Phys. Chem. B 103 (1999), 6111.Google Scholar
  20. 20.
    Stange, P., Mikhailov, A.S. and Hess, B.: J. Phys. Chem. B 104 (2000), 1844.Google Scholar
  21. 21.
    Mikhailov, A.S. and Ertl, G.: Science 272 (1996), 1596.Google Scholar
  22. 22.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.Google Scholar
  23. 23.
    Kaneko, K. and Tsuda, I.: Complex Systems: Chaos and Beyond, Springer, Berlin, 2000.Google Scholar
  24. 24.
    Singer, W.: Neuron 24 (1999), 49.Google Scholar
  25. 25.
    Lu, H.P., Luying, X. and Xie, X.S.: Science 282 (1998), 1877.Google Scholar
  26. 26.
    Blumenfeld, L.A. and Tikhonov, A.N.: Biophysical Thermodynamics of Intracellular Processes: Molecular Machines of the Living Cell, Springer, Berlin, 1994.Google Scholar
  27. 27.
    Socci, N.D., Onuchic, J.N. and Wolynes, P.G.: J. Chem. Phys. 104 (1996), 5860.Google Scholar
  28. 28.
    Häberle, W., Gruler, H., Dutkowski, Ph. and Muller-Enoch, D.Z.: Z. Naturforsch. 45c (1990), 237.Google Scholar
  29. 29.
    Gruler, H. and Muller-Enoch, D.Z.: Eur. Biophys. J. 19 (1991), 217.Google Scholar
  30. 30.
    Schienbein, M. and Gruler, H.: Phys. Rev. E 56 (1997), 7116.Google Scholar
  31. 31.
    Glotzer, S.C., Di Marzio, E.A. and Muthukumar, M.: Phys. Rev. Lett. 74 (1995), 2034.Google Scholar
  32. 32.
    Motoyama, M. and Ohta, T.: J. Phys. Soc. Jpn 66 (1997), 2715.Google Scholar
  33. 33.
    Hildebrand, M., Mikhailov, A.S. and Ertl, G.: Phys. Rev. E 58 (1998), 5483.Google Scholar
  34. 34.
    Tran-Cong, Q. and Harada, A.: Phys. Rev. Lett. 76 (1996), 1162.Google Scholar
  35. 35.
    Hildebrand, M., Mikhailov, A.S. and Ertl, G.: Phys. Rev. Lett. 81 (1998), 2602.Google Scholar
  36. 36.
    Hildebrand, M. and Mikhailov, A.S.: J. Stat. Phys. 101 (2000), 599.Google Scholar
  37. 37.
    Okuzono, T. and Ohta, T.: Phys. Rev. E 64 (2001), 045201(R).Google Scholar
  38. 38.
    Tabe, Y. and Yokoyama, H.: Langmuir 11 (1995), 4609.Google Scholar
  39. 39.
    Zangmeister, Ch.D. and Pemberton, J.E.: J. Phys. Chem. B 102 (1998), 8950.Google Scholar
  40. 40.
    Hildebrand, M., Kuperman, M., Wio, H., Mikhailov, A.S. and Ertl, G.: Phys. Rev. Lett. 83 (1999), 1475.Google Scholar
  41. 41.
    Mimura, M. and Tsujikawa, T.: Physica A 230 (1996), 499.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • A.S. Mikhailov
    • 1
  • B. Hess
    • 2
  1. 1.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany
  2. 2.Max-Planck-Institut für molekulare PhysiologieDortmundGermany

Personalised recommendations