Advertisement

Photosynthesis Research

, Volume 74, Issue 3, pp 235–249 | Cite as

Chloroplast fructose-1,6-bisphosphatase: structure and function

  • Ana Chueca
  • Mariam Sahrawy
  • Eduardo A. Pagano
  • Julio López GorgéEmail author
Article

Abstract

Redox regulation of photosynthetic enzymes has been a preferred research topic in recent years. In this area chloroplast fructose-1,6-bisphosphatase is probably the most extensively studied target enzyme of the CO2 assimilation pathway. This review analyzes the structure, biosynthesis, phylogeny, action mechanism, regulation and kinetics of fructose-1,6-bisphosphatase in the light of recent findings on structure–function relationship, and from a molecular biology viewpoint.

Calvin cycle chloroplast metabolism fructose-1 6-bisphosphatase redox regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson LE (1986) Light/dark modulation of enzyme activity in plants. Adv Bot Res 12: 1–46Google Scholar
  2. Baier D and Latzko E (1975) Properties and regulation of C-1-fructose-1,6-diphosphatase from spinach chloroplast. Biochim Biophys Acta 396: 141–148PubMedCrossRefGoogle Scholar
  3. Balmer Y and Schürmann P (2001) Heterodimer formation between thioredoxin f and fructose 1,6-bisphosphatase from spinach chloroplasts. FEBS Lett 492: 58–61PubMedCrossRefGoogle Scholar
  4. Balmer Y, Stritt-Etter AL, Hirasawa M, Jacquot JP, Keryer E, Knaff DB and Schürmann P (2001) Oxidation-reduction and activation properties of chloroplast fructose-1,6-bisphosphatase with mutated regulatory site. Biochemistry 40: 5444–5450CrossRefGoogle Scholar
  5. Bassham JA and Krause GH (1969) Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochim Biophys Acta 189: 207–221PubMedCrossRefGoogle Scholar
  6. Brandes HK, Larimer FW, Geck MK, Stringer CD, Schürmann P and Hartman FC (1993) Direct identification of the primary nucleophile of thioredoxin f. J Biol Chem 268: 18411–18414PubMedGoogle Scholar
  7. Brown D and Kershaw KA (1986) Seasonal changes in the kinetic parameters of a photosynthetic fructose-1,6-bisphosphatase isolated from Peltigera rufescens. Plant Physiol 82: 457–461PubMedGoogle Scholar
  8. Butler LG (1979) Enzymes in non-aqueous solvents. Enzyme Microbiol Technol 1: 253–259CrossRefGoogle Scholar
  9. Cadet F and Meunier JC (1988) pH and kinetic studies of chloroplast sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea). Biochem J 253: 249–254PubMedGoogle Scholar
  10. Capitani G, Markovic-Housley Z, Del Val G, Morris M, Jansonius JN and Schürmann P (2000) Crystal structures of two functionally different thioredoxins in spinach chloroplasts. J Mol Biol 302: 135–154PubMedCrossRefGoogle Scholar
  11. Chardot T, Queiroz-Claret CM and Meunier JC (1991) Non reductive activation of spinach chloroplastic fructose-1,6-bisphosphatase: evidence for structural modification of the enzyme. Biochimie 73: 1205–1209PubMedCrossRefGoogle Scholar
  12. Charles SA and Halliwell B (1980) Properties of freshly purified and thiol-treated spinach chloroplast fructose bisphosphatase. Biochem J 185: 689–693PubMedGoogle Scholar
  13. Charles SA and Halliwell B (1981) The role of calcium ions and the thioredoxin system in regulation of spinach chloroplast fructosebisphosphatase. Cell Calcium 2: 211–224CrossRefGoogle Scholar
  14. Chiadmi M, Navaza A, Miginiac-Maslow M, Jacquot JP and Cher-fils J (1999) Redox signalling in the chloroplast structure of oxidized pea fructose-1,6-bisphosphate phosphatase. EMBO J 18: 6809–6815PubMedCrossRefGoogle Scholar
  15. Chueca A, Lázaro JJ and López Gorgé J (1984) Lightinduced nuclear synthesis of spinach chloroplast fructose-1,6-bisphosphatase. Plant Physiol 75: 539–541PubMedGoogle Scholar
  16. Corley E and Wolosiuk RA (1985) The effect of organic solvents on the activation and the activity of spinach chloroplast fructose-1,6-bisphosphatase. J Biol Chem 260: 3978–3983PubMedGoogle Scholar
  17. Crawford NA, Sutton CW, Yee BC, Johnson TC, Carlson DC and Buchanan BB (1984) Contrasting modes of photosynthetic enzyme regulation in oxygenic and anoxygenic prokaryotes. Arch Microbiol 139: 124–129PubMedCrossRefGoogle Scholar
  18. Cséke C, Balogh A, Wong JH, Buchanan BB, Stitt M, Herzog B and Heldt HW (1984) Fructose 2,6-bisphosphate. A regulator of carbon processing in leaves. Trends Biochem Sci 9: 533–535CrossRefGoogle Scholar
  19. Cséke C and Buchanan BB (1986) Regulation of the formation and utilization of photosynthate in leaves. Biochim Biophys Acta 853: 43–63Google Scholar
  20. Dai S, Schwendtmayer C, Johansson K, Ramaswamy S, Schürmann P and Eklund H (2000) How does light regulate chloroplast enzymes? Structure-function studies of the ferredoxin/thioredoxin system. Quart Rev Biophys 33: 67–108CrossRefGoogle Scholar
  21. Doublie S, Tabor S, Long AM, Richardson CC and Ellenberger T (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391: 251–258PubMedCrossRefGoogle Scholar
  22. Duek PD and Wolosiuk RA (2001) Rapeseed chloroplast thioredoxin-m. Modulation of the affinity for target proteins. Biochim Biophys Acta 1546: 299–311PubMedGoogle Scholar
  23. Fonollá J, Hermoso R, Carrasco JL, Chueca A, Lázaro JJ, Prado FE and López Gorgé J (1994) Antigenic relationships between chloroplast and cytosolic fructose-1,6-bisphosphatases. Plant Physiol 104: 381–386PubMedCrossRefGoogle Scholar
  24. Geck MK, Larimer FW and Hartman FC (1996) Identification of residues of spinach thioredoxin f that influence interactions with target proteins. J Biol Chem 271: 24736–24740PubMedCrossRefGoogle Scholar
  25. Gerbling KP, Steup M and Latzko E (1986) Fructose-1,6-bisphosphatase form B from Synechococcus leopoliensis hydrolyzes both fructose and sedoheptulose bisphosphate. Plant Physiol 80: 716–720PubMedGoogle Scholar
  26. Gibson JL, Chen JH, Tower PA and Tabita FR (1990) The form-II fructose-1,6-bisphosphatase and phosphoribulokinase genes form part of a large operon in Rhodobacter sphaeroides. Primary structure and insertional mutagenesis analysis. Biochemistry 29: 8085–8093PubMedCrossRefGoogle Scholar
  27. Gilmartin PM, Sarolin L, Memelink J and Chua NH (1990) Molecular light switches for plant genes. Plant Cell 2: 369–378PubMedCrossRefGoogle Scholar
  28. Gontero B, Mulliert G, Rault M, Giudici-Orticoni MT and Ricard J (1993) Structural and functional properties of a multi-enzyme complex from spinach chloroplasts. 2. Modulation of the kinetic properties of enzymes in the aggregated state. Eur J Biochem 217: 1075–1082PubMedCrossRefGoogle Scholar
  29. Grotjohann N (1993) Fructose 1,6-bisphosphatase in Chlorella kessleri grown in red or blue light. Z Naturforsch 48c: 707–712Google Scholar
  30. Häberlein I and Vogeler B (1995) Completion of the thioredoxin reaction mechanism: kinetic evidence for protein complexes between thioredoxin and fructose-1,6-bisphosphatase. Biochim Biophys Acta 1253: 169–174PubMedGoogle Scholar
  31. Harrison EP, Willingham NM, Lloyd, JC and Raines CA (1998) Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204: 27–36CrossRefGoogle Scholar
  32. Hermoso R, De Felipe MR, Vivó A, Chueca A, Lázaro JJ and López Gorgé J (1989) Immunogold localization of photosynthetic fructose-1,6-bisphosphatase in pea leaf tissue. Plant Physiol 89: 381–385PubMedCrossRefGoogle Scholar
  33. Hermoso R, Fonollá J, De Felipe MR, Vivó A, Chueca A, Lázaro JJ and López Gorgé J (1992) Double immunogold localization of thioredoxin f and photosynthetic fructose-1,6-bisphosphatase in spinach leaves. Plant Physiol Biochem 30: 39–46Google Scholar
  34. Hermoso R, Castillo M, Chueca A, Lázaro JJ, Sahrawy M and López Gorgé J (1996) Binding site on pea chloroplast fructose-1,6-bisphosphatase involved in the interaction with thioredoxin. Plant Mol Biol 30: 455–465PubMedCrossRefGoogle Scholar
  35. Hertig CM and Wolosiuk RA (1980) A dual effect of Ca2+ on chloroplast fructose-1,6-bisphosphatase. Biochem Biophys Res Commun 97: 325–333PubMedCrossRefGoogle Scholar
  36. Hertig CM and Wolosiuk RA (1983) Studies on the hysteretic properties of chloroplast fructose-1,6-bisphosphatase. J Biol Chem 258: 984–989PubMedGoogle Scholar
  37. Hirasawa M, Schürmann P, Jacquot JP, Manieri W, Jacquot P, Keryer E, Hartman FC and Knaff DB (1999) Oxidation-reduction properties of chloroplast thioredoxins, ferredoxin-thioredoxin reductase and thioredoxin f-regulated enzymes. Biochemistry 38: 5200–5205PubMedCrossRefGoogle Scholar
  38. Hodges M, Miginiac-Maslow M, Decottignies P, Jacquot JP, Stein M, Lepiniec L, Crétin C and Gadal P (1994) Purification and characterization of pea thioredoxin f expressed in Escherichia coli. Plant Mol Biol 26: 225–234PubMedCrossRefGoogle Scholar
  39. Höög JO, VonBahr-Lindström H, Josephson S, Wallace B, Kushner SR, Jörnvall H and Holmgren A (1985) Nucleotide sequence of the thioredoxin gene from Escherichia coli. Biosci Rep 4: 917–923CrossRefGoogle Scholar
  40. Huppe HC and Buchanan BB (1989) Activation of chloroplast type of fructose bisphosphatase from Chlamydomonas reinhardtii by light-mediated agents. Z Naturforsch 44c: 487–494Google Scholar
  41. Jacquot JP (1984) Post-translational modifications of proteins in higher plant chloroplasts. Enzyme regulation by thiol-disulfide interchange. Physiol Vég 22: 487–507Google Scholar
  42. Jacquot JP, López Jaramillo J, Chueca A, Cherfils J, Lemaire S, Chedozeau R, Miginiac-Maslow M, Decottignies P, Wolosiuk R and López Gorgé J (1995) High-level expression of recombinant pea chloroplast fructose-1,6-bisphosphatase and mutagenesis of its regulatory site. Eur J Biochem 229: 675–681PubMedCrossRefGoogle Scholar
  43. Jacquot JP, Lancelin JM and Meyer Y (1997a) Thioredoxins: structure and function in plant cells. New Phytol 136: 543–570CrossRefGoogle Scholar
  44. Jacquot JP, López Jaramillo J, Miginiac-Maslow M, Lemaire M, Cherfils J, Chueca A and López Gorgé J (1997b) Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase. FEBS Lett 401: 143–147PubMedCrossRefGoogle Scholar
  45. Kaiser VM and Bassham JA (1979) Light-dark regulation of starch metabolism in chloroplasts. 1. Levels of metabolites in chloroplasts and medium during light-dark transition. Plant Physiol 63: 105–108PubMedGoogle Scholar
  46. Kamo M, Tsugita A, Wiesner C, Wedel N, Bartling D, Herrmann RG, Aguilar F, Gardet-Salvi L and Schürmann P (1989) Primary structure of spinach chloroplast thioredoxin f. Protein sequencing and analysis of complete cDNA clones for spinach chloroplast thioredoxin f. Eur J Biochem 182: 315–322PubMedCrossRefGoogle Scholar
  47. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular Cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Research 3: 109–136PubMedCrossRefGoogle Scholar
  48. Ke H, Thorpe CM, Seaton BA, Marcus F and Lipscomb WN (1989) Molecular structure of fructose-1,6-bisphosphatase at 2.8 Å resolution. Proc Natl Acad Sci USA 86: 1475–1479PubMedCrossRefGoogle Scholar
  49. Ke H, Zhang Y, Liang JY and Lipscomb WN (1991) Crystal structure of the neutral form of fructose-1,6-bisphosphatase complexed with the product fructose 6-phosphate at 2.1-Å resolution. Proc Natl Acad Sci USA 88: 2989–2993PubMedCrossRefGoogle Scholar
  50. Kelly GJ, Zimmermann G and Latzko E (1976) Light-induced activation of fructose-1,6-bisphosphatase in isolated intact chloroplasts. Biochem Biophys Res Commun 70: 193–199PubMedCrossRefGoogle Scholar
  51. Knaff DB (2000) Oxidation-reduction properties of thioredoxins and thioredoxin-regulated enzymes. Physiol Plant 110: 309–313CrossRefGoogle Scholar
  52. Koßman J, Sonnewald U and Willmitzer L (1994) Reduction of the chloroplastic fructose-1,6-bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. Plant J 6: 637–650CrossRefGoogle Scholar
  53. Laing WA, Stitt M and Heldt HW (1981) Control of CO2 fixation. Changes in the activity of ribulosephosphate kinase and fructoseand sedoheptulose-bisphosphatase in chloroplasts. Biochim Biophys Acta 637: 348–359CrossRefGoogle Scholar
  54. Lamotte-Guery V, Miginiac-Maslow M, Decottignies P, Stein M, Minard P and Jacquot JP (1991) Mutation of a negatively charged amino acid in thioredoxin modifies its reactivity with chloroplastic enzymes. Eur J Biochem 196: 287–294PubMedCrossRefGoogle Scholar
  55. Lancelin JM, Stein M and Jacquot JP (1993) Secondary structure and protein folding of recombinant chloroplastic thioredoxin Ch2 from the green alga Chlamydomonas reinhardtii as determined by 1H NMR1. J Biochem 114: 421–431PubMedGoogle Scholar
  56. Lázaro JJ, Chueca A, López Gorgé J and Mayor F (1975a) Fructose-1,6-diphosphatase from spinach leaf chloroplasts: molecular weight transitions of the purified enzyme. Plant Sci Lett 5: 49–55CrossRefGoogle Scholar
  57. Lázaro JJ, Chueca A, López Gorgé J and Mayor F (1975b) Properties of spinach chloroplast fructose-1,6-bisphosphatase. Phytochemistry 14: 2579–2583CrossRefGoogle Scholar
  58. Leegood RC and Walker DA (1980) Auto catalysis and light activation of enzymes in relation to photosynthetic induction in wheat chloroplasts. Arch Biochem Biophys 200: 575–582PubMedCrossRefGoogle Scholar
  59. Lepiniec L, Hodges M, Gadal P and Crétin C (1992) Isolation, characterization and nucleotide sequence of a full-length pea cDNA encoding thioredoxin-f. Plant Mol Biol 18: 1023–1025PubMedCrossRefGoogle Scholar
  60. Lloyd JC, Raines CA, John UP and Dyer TA (1991) The chloroplast FBPase gene of wheat structure and expression of the promoter in photosynthetic and meristematic cells of transgenic tobacco plants. Mol Gen Genet 225: 209–216PubMedCrossRefGoogle Scholar
  61. López Jaramillo J, Chueca, A, Sahrawy M, Hermoso R, Lázaro JJ, Prado FE and López Gorgé J (1994) Cloning and sequencing of a pea cDNA fragment coding for thioredoxin m. Plant Physiol 105: 1021–1022PubMedCrossRefGoogle Scholar
  62. López Jaramillo J, Chueca A, Jacquot JP, Hermoso R, Lázaro JJ, Sahrawy M and López Gorgé J (1997) High-yield expression of pea thioredoxin m and assessment of its efficiency in chloroplast fructose-1,6-bisphosphatase activation. Plant Physiol 114: 1169–1175PubMedCrossRefGoogle Scholar
  63. Marcus F, Moberly L and Latshaw SP (1988) Comparative amino acid sequence of fructose-1,6-bisphosphatases. Identification of a region unique to the light-regulated chloroplast enzyme. Proc Natl Acad Sci USA 85: 5379–5383PubMedCrossRefGoogle Scholar
  64. Martin W, Mustafa AZ, Henze K and Schnarrenberger C (1996) Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: origin via duplication rather than prokaryote-eukaryote divergence. Plant Mol Biol 32: 485–491PubMedCrossRefGoogle Scholar
  65. Meunier JC, Buc J, Soulié JM and Pradel J (1981) Substrate binding isotherms of spinach chloroplastic fructose-1,6-bisphosphatase and the photoregulation of the Calvin cycle. Eur J Biochem 113: 513–520PubMedCrossRefGoogle Scholar
  66. Meyer Y, Verdoucq L and Vignols F (1999) Plant thioredoxins and glutaredoxins: identity and putative roles. Trends Plant Sci 4: 388–394PubMedCrossRefGoogle Scholar
  67. Miles AJ, Potts SC, Willingham NM, Raines CA and Lloyd JC (1993) A light-and developmentally-regulated DNA-binding interaction is common to the upstream sequences of the wheat Calvin cycle bisphosphatase genes. Plant Mol Biol 22: 507–516PubMedCrossRefGoogle Scholar
  68. Miyagawa Y, Tamoi M and Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol 19: 965–969PubMedCrossRefGoogle Scholar
  69. Mora-García S, Rodríguez-Suárez R and Wolosiuk RA (1998) Role of electrostatic interactions on the affinity of thioredoxin for target proteins. J Biol Chem 273: 16273–16280PubMedCrossRefGoogle Scholar
  70. Pagano EA, Chueca A, Hermoso R, Lázaro JJ and López Gorgé J (2000a) Ontogenic changes of thioredoxins f and m, and of their targets fructose-1,6-bisphosphatase and NAD(P)-malate dehydrogenase, of pea plants grown under light stress conditions. New Phytol 145: 21–28CrossRefGoogle Scholar
  71. Pagano EA, Chueca A and López Gorgé J (2000b) Expression of thioredoxins f and m, and of their targets fructose-1,6-bisphosphatase and NADP-malate dehydrogenase, in pea plants grown under normal and light/temperature stress conditions. J Exp Bot 51: 1299–1307PubMedCrossRefGoogle Scholar
  72. Plá A and López Gorgé J (1981) Thioredoxin/fructose-1,6-bisphosphatase affinity in the enzyme activation by the ferredoxin-thioredoxin system. Biochim Biophys Acta 636: 113–118PubMedCrossRefGoogle Scholar
  73. Pradel J, Soulie JM, Buc J, Meunier JC and Ricard J (1981) On the activation of fructose-1,6-bisphosphatase of spinach chloroplasts and the regulation of the Calvin cycle. Eur J Biochem 113: 507–511PubMedCrossRefGoogle Scholar
  74. Preiss J, Biggs ML and Greenberg E (1967) The effect of magnesium ion concentration on the pH optimum of the spinach leaf alkaline fructose diphosphatase. J Biol Chem 242: 2292–2294PubMedGoogle Scholar
  75. Qin J, Clore GM, Poindexter-Kennedy W, Huth JR and Gronenborg A (1995) Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor Nf?B. Structure 3: 289–297PubMedCrossRefGoogle Scholar
  76. Qin J, Clore GM, Poindexter-Kennedy W, Kuszewsli J and Gronenborn A (1996) The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. Structure 4: 613–620PubMedCrossRefGoogle Scholar
  77. Raines CA, Lloyd JC, Longstaff M, Bradley D and Dyer TA (1988) Chloroplast fructose-1,6-bisphosphatase: the product of a mosaic gene. Nucleic Acids Res 16: 7931–7942PubMedGoogle Scholar
  78. Raines CA, Lloyd JC and Dyer T (1991) Molecular biology of the C3-photosynthetic carbon reduction cycle. Photosynth Res 27: 1–14CrossRefGoogle Scholar
  79. Raines CA, Lloyd JC, Willingham NM, Potts S and Dyer TA (1992) cDNA and gene sequences of wheat chloroplast sedoheptulose-1,7-bisphosphatase reveal homology with fructose-1,6-bisphosphatases. Eur J Biochem 205: 1053–1059PubMedCrossRefGoogle Scholar
  80. Rebeille F and Hatch MD (1986) Regulation of NADP-malate dehydrogenase in C4 plants: effect of varying NADPH to NADP ratios and thioredoxin redox state on enzyme activity in reconstituted systems. Arch Biochem Biophys 249: 164–170PubMedCrossRefGoogle Scholar
  81. Rodríguez Andrés A, Lázaro JJ, Chueca A, Hermoso R and López Gorgé J (1987) Binding of photosynthetic fructose-1,6-bisphosphatase to chloroplast membranes. Plant Sci 52: 41–48CrossRefGoogle Scholar
  82. Rodríguez Andrés A, Lázaro JJ, Chueca A, Hermoso R and López Gorgé J (1990) Effect of alcohols on the association of photosynthetic fructose-1,6-bisphosphatase to thylakoid membranes. Physiol Plant 78: 409–413CrossRefGoogle Scholar
  83. Ruelland E and Miginiac-Maslow M (1999) Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition?. Trends Plant Sci 4: 136–141PubMedCrossRefGoogle Scholar
  84. Sahrawy M, Chueca A, Hermoso R, Lázaro JJ and López Gorgé J (1990a) Role of light in the biosynthesis and turnover of photosynthetic fructose-1,6-bisphosphatase in pea (Pisum sativum L.) seedlings. New Phytol 115: 603–608CrossRefGoogle Scholar
  85. Sahrawy M, Chueca A, Hermoso R, Lázaro JJ and López Gorgé J (1990b) In-vivo and in-vitro synthesis of photosynthetic fructose-1,6-bisphosphatase from pea (Pisum sativum L.). Planta 182: 319–324CrossRefGoogle Scholar
  86. Sahrawy M, Chueca A, Hermoso R, Lázaro JJ and López Gorgé J (1997) Directed mutagenesis shows that the preceding region of the chloroplast fructose-1,6-bisphosphatase regulatory sequence is the thioredoxin docking site. J Mol Biol 269: 623–630PubMedCrossRefGoogle Scholar
  87. Sahrawy M, Chueca A, Cazalis R, Traverso JA and López Gorgé J (2001) Cloning and characterization of the genomic sequence and promoter region of pea chloroplastic fructose-1,6-bisphosphatase. In: Proceedings 12th International Congress on Photosynthesis, pp S19–006 (1-4). CSIRO Publishing, Collingwood, AustraliaGoogle Scholar
  88. Scheibe R (1981) Thioredoxinm in pea chloroplasts: concentration and redox state under light and dark conditions. FEBS Lett 133: 301–304CrossRefGoogle Scholar
  89. Scheibe R (1990) Light/dark modulation: regulation of chloroplast metabolism in a new light. Bot Acta 103: 323–334Google Scholar
  90. Schürmann P and Jacquot JP (2000) Plant thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51: 371–400PubMedCrossRefGoogle Scholar
  91. Schürmann P and Wolosiuk RA (1978) Studies on regulatory properties of chloroplast fructose-1,6-bisphosphatase. Biochim Biophys Acta 522: 130–138PubMedGoogle Scholar
  92. Schürmann P, Roux J and Salvi L (1985) Modification of thioredoxin specificity of chloroplast fructose-1,6-bisphosphatase by substrate and Ca2+. Physiol Vég. 23: 813–818Google Scholar
  93. Stein M, Jacquot JP, Jeannette E, Decotiggnies P, Hodges M, Lancelin JM, Mittard V, Schmitter JM and Miginiac-Maslow M (1995) Chlamydomonas reinhardtii thioredoxins: structure of the genes coding for the chloroplastic m and cytosolic h isoforms; expression in Escherichia coli of the recombinant proteins, purification and biochemical properties. PlantMol Biol 28: 487–503CrossRefGoogle Scholar
  94. Stitt M (1993) Control of photosynthetic carbon fixation and partitioning: how can use of genetically manipulated plants improve the nature and quality of information about regulation? Phil Trans R Soc London B 340: 225–233Google Scholar
  95. Stitt M (1994) Manipulation of carbohydrate partitioning. Current Opinion Biotechnol 5: 137–143CrossRefGoogle Scholar
  96. Süss KH, Arkona C, Manteuffel R and Adler K (1993) Calvin cycle multienzyme complexes are bound to chloroplast thylakoid membranes of higher plants in situ. Proc Natl Acad Sci USA 90: 5514–5518PubMedCrossRefGoogle Scholar
  97. Villeret V, Huang S, Zhang Y, Xue Y and Lipscomb WN (1995) Crystal structure of spinach fructose-1,6-bisphosphatase at 2.8 Å resolution. Biochemistry 34: 4299–4306PubMedCrossRefGoogle Scholar
  98. Wangensteen OS, Chueca A, Hirasawa M, Sahrawy M, Knaff DB and López Gorgé J (2001) Binding features of chloroplast fructose-1,6-bisphosphatase-thioredoxin interaction. Biochim Biophys Acta 1547: 156–166PubMedGoogle Scholar
  99. Wedel N, Clausmeyer S, Herrman RG, Gardet-Salvi L and Schürmann P (1992) Nucleotide sequence of cDNAs encoding the entire precursor polypeptide for thioredoxin m from spinach chloroplasts. Plant Mol Biol 18: 527–533PubMedCrossRefGoogle Scholar
  100. Wolosiuk RA and Buchanan BB (1977) Thioredoxin and glutathione regulate photosynthesis in chloroplast. Nature 266: 565–567CrossRefGoogle Scholar
  101. Yoo JG and Bowien B (1995) Analysis of the cbbF genes from Alcaligenes eutrophus that encode fructose-1,6-/sedoheptulose-1,7-bisphosphatase. Curr Microbiol 31: 55–61PubMedCrossRefGoogle Scholar
  102. Zimmermann G, Kelly GJ and Latzko E (1976) Efficient purification and molecular properties of spinach chloroplast fructose 1,6-bisphosphatase. Eur J Biochem 70: 361–367PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ana Chueca
    • 1
  • Mariam Sahrawy
    • 1
  • Eduardo A. Pagano
    • 2
  • Julio López Gorgé
    • 1
    Email author
  1. 1.Department of Biochemistry, Cell and Molecular Biology of PlantsEstación Experimental del Zaidín (CSIC)GranadaSpain
  2. 2.Department of BiochemistryFacultad de AgronomíaBuenos AiresArgentina

Personalised recommendations