Advertisement

Plant Molecular Biology

, Volume 50, Issue 6, pp 915–924 | Cite as

The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1

  • Patrick J. Hussey
  • Timothy J. Hawkins
  • Hisako Igarashi
  • Despina Kaloriti
  • Andrei Smertenko
Article

Abstract

The microtubule cytoskeleton is a dynamic filamentous structure involved in many key processes in plant cell morphogenesis including nuclear and cell division, deposition of cell wall, cell expansion, organelle movement and secretion. The principal microtubule protein is tubulin, which associates to form the wall of the tubule. In addition, various associated proteins bind microtubules either to anchor, cross-link or regulate the microtubule network within cells. Biochemical, molecular biological and genetic approaches are being successfully used to identify these microtubule-associated proteins (MAPs) in plants, and we describe recent progress on three of these proteins.

Arabidopsis carrot MAP (microtubule-associated protein) microtubule cytoskeleton tobacco tobacco BY-2 cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade, M.A. and Bork, P. 1995. HEAT repeats in the Huntington's disease protein. Nat. Genet. 11: 115–116.Google Scholar
  2. Assier, E., Bouzinba-Segard, H., Stolzenberg, M.-C., Stephens, R., Bardos, J., Freemont, P., Charron, D., Trowsdale, J. and Rich, T. 1999. Isolation, sequencing and expression of RED, a novel human gene encoding an acidic-basic dipeptide repeat. Gene 230: 145–154.Google Scholar
  3. Barlow P. W. (Ed.) Actin: A Dynamic Framework For Multiple Plant Cell Functions. Kluwer Academic Publishers. Dordrecht/Boston/London, pp. 29-44.Google Scholar
  4. Barroso, C., Chan, J., Allan, V., Doonan, J., Hussey, P. and Lloyd. C. 2000. Two kinesin-related proteins associated with the cold-stable cytoskeleton of carrot cells: characterisation of a novel kinesin, DcKRP120-2. Plant J. 24: 859–868.Google Scholar
  5. Chan, J., Jensen, C.G., Jensen, L.C.W., Bush, M. and Lloyd C.W. 1999. The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules Proc. Natl. Acad. Sci. USA 96: 14931–14936.Google Scholar
  6. Chan, J., Rutten, T. and Lloyd, C.W. 1996. Isolation of microtubule-associated proteins from carrot cytoskeletons: a 120kDa MAP decorates all four microtubule arrays and the nucleus. Plant J. 10: 251–259.Google Scholar
  7. Charasse, S., Schroeder, M., Gauthier-Rouviere, C., Ango, F., Cassimeris, L., Card, D.L. and Larroque, C. 1998. The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J. Cell Biol. 111: 1371–1383.Google Scholar
  8. Charasse, S., Lorca, T., Doree, M. and Larroque, C. 2000. The Xenopus XMAP215 and its human homologue TOG proteins interact with cyclin B1 to target p34cdc2 to microtubules during mitosis. Exp. Cell Res. 254: 249–256.Google Scholar
  9. Cullen, C.F., Deak, P., Glover, D.M. and Ohkura, H. 1999. Mini spindles: a gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J. Cell Biol. 146: 1005–1018.Google Scholar
  10. Cyr, R.J. and Palevitz, B.A. 1989. Microtubule binding proteins from carrot. Initial characterisation and microtubule bundling. Planta 177: 245–260.Google Scholar
  11. Desai, A., Verma, S., Mitchison, T.J. and Walczak, C.E. 1999. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96: 69–78.Google Scholar
  12. Dhamodharan, R. and Wadsworth, P. 1995. Modulation of microtubule dynamic instability in vivo by brain microtubule associated proteins. J. Cell Sci. 108: 1679–1689.Google Scholar
  13. Ebneth, A., Drewes, G. and Mandelkow, E. 1999. Phosphorylation of MAP2c and MAP4 by MARK kinases leads to the destabilisation of microtubules in cells. Cell Motil. Cytoskeleton 44: 209–224.Google Scholar
  14. Fisher, D.D. and Cyr, R.J. 1998. Extending the microtubule/ microfibril paradigm: cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol. 116: 1043–1051.Google Scholar
  15. Gavin, R.H. 1997. Microtubule-microfilament synergy in the cytoskeleton. Int. Rev. Cytol. 173: 207–242.Google Scholar
  16. Genschik, P., Criqui, M. C., Parmentier, Y., Derevier, A. and Fleck, J. 1998. Cell cycle-dependent proteolysis in plants: identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell 10: 2063–2075.Google Scholar
  17. Giddings, H. and Staehelin, L.A. 1991. Microtubule mediated control of microfibril deposition; a re-examination of the hypoithesis. In: C.W. Lloyd (Ed.) The Cytoskeletal Basis of Plant Growth and Form, Academic Press, London, pp. 85–100.Google Scholar
  18. Glotzer, M., Murray, A.W. and Kirschner, M.W. 1991. Cyclin is degraded by the ubiquitin pathway. Nature 349: 132–138.Google Scholar
  19. Graf, R., Daunderer, C. and Schliwa, M. 2000. Dictyostelium DdCP224 is a microtubule-associated protein and a permanent centrosomal resident involved in centrosome duplication. J. Cell Sci. 113: 1747–1758.Google Scholar
  20. Groves, M.R., Hanlon, N., Turowski, P., Hemmings, B.A. and Barford. D. 1999 The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96: 99–110.Google Scholar
  21. Higashiyama, T., Sonobe, S., Murfushi, H. and Hasezawa, S. 1996. Identification of a novel 70kDa protein in cultured tobacco cells that is immunologically related to MAP4. Cytologia 61: 229–233.Google Scholar
  22. Hush, J.M., Wadsworth, P., Callaham, D.A. and Hepler, P.K. 1994. Quantification of microtubule dynamics in living plant cells using flourescence redistribution after photobleaching. J. Cell Sci. 107: 775–784.Google Scholar
  23. Hussey, P.J. and Hawkins, T.J. 2001. Plant microtubule associated proteins: the HEAT is off in temperature-sensitive mor1. Trends Plant Sci. (in press).Google Scholar
  24. Igarashi, H., Orii, H., Mori, H., Shimmen, T. and Sonobe, S. 2000. Isolation of a novel 190 kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol. 41: 920–931.Google Scholar
  25. Jiang, C.-J. and Sonobe, S. 1993. Identification and preliminary characterization of 65 kDa higher-plant microtubule-associated protein. J. Cell Sci. 105: 891–901.Google Scholar
  26. Jiang, W., Jimenez, G., Wells, N.J., Hope, T.J., Wahl, G.M., Hunter T. and Fukunaga, R. 1998. PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol. Cell 2: 877–885.Google Scholar
  27. Juang, Y.-L., Huang, J., Peters, J.-M., McLaughlin, M.E., Tai, Ch.-Y. and Pellman, D. 1997. APC-mediated proteolysis of Ase1 and the morphogenesis of the mitotic spindle. Nature 275: 1311–1314.Google Scholar
  28. Lloyd, C.W. 1991. The Cytoskeletal Basis of Plant Growth and Form. Academic Press, London.Google Scholar
  29. Lloyd, C. and Hussey, P. 2001. Microtubule-associated proteins in plants: why we need a MAP. Nature Rev. 2: 40–47.Google Scholar
  30. Lloyd, C.W., Shaw, P.J., Warn, R.M. and Yuan, M. 1996. Gibberellic acid-induced reorientation of cortical microtubules in living plant cells. J. Microsc. 181: 140–144.Google Scholar
  31. Maekawa, T., Ogihara, S., Murofushi, H. and Nagai, R. 1990. Green algal microtubule-associated protein with a molecular weight of 90kDa which bundles microtubules. Protoplasma 158: 10–18.Google Scholar
  32. Mathews, L.R., Carter, P., Thierry-Mieg, D. and Kemphues, K. 1988. ZYG-9, a Caenorhabditis elegans protein required for microtubule organisation and function, is a component of meiotic and mitotic spindle poles. J. Cell Biol. 141: 1159–1573.Google Scholar
  33. Mitchison, T.J. and Kirschner, M.W. 1984. Dynamic instability of microtubule growth. Nature 312: 237–242.Google Scholar
  34. Nabeshima, K., Kurooka, H., Takeuchi, M., Kinoshita, K., Nakaseko, Y. and Yanagida, M. 1995. P93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole-body associating protein phosphorylated at the Cdc2 target sites. Genes Dev. 9: 1572–1585.Google Scholar
  35. Ookata, K., Hisanaga, S., Bulinski, J. C., Murofushi, H., Aizawa, H., Itoh T.J., Hotani, H., Okumura, E., Tachibana, K. and Kishimoto, T. 1995. Cyclin-B interaction with microtubule-associated protein-4 (MAP4) targets p34(cdc2) kinase to microtubules and is a potential regulator of m-phase microtubule dynamics. J. Cell Biol. 128: 849–862.Google Scholar
  36. Pellman D., Bagget M., Tu H. and Fink, G.R. 1995. Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae. J. Cell Biol. 130: 1373–1385.Google Scholar
  37. Popov, A.V., Pozniakovsky, A., Arnal, I., Antony, C., Ashford, A.J., Kinoshita, K., Tournebize, R., Hyman, A.A. and Karsenti, E. 2001. XMAP215 regulates microtubule dynamics through two distinct domains. EMBO J. 20: 397–410.Google Scholar
  38. Rutten, T., Chan, J. and Lloyd, C.W. 1997. A 60-kDa plant microtubule-associated protein promotes the growth and stabilisation of nurotubules in vitro. Proc. Natl. Acad. Sci. USA 94: 4469–4474.Google Scholar
  39. Smertenko, A., Saleh, N., Igarashi, H., Mori, H., Hauser-Hahn, I., Jiang, C.-J., Sonobe, S., Lloyd, C.W. and Hussey, P.J. 2000. A new class of microtubule-associated proteins in plants. Nat. Cell Biol. 2: 750–753.Google Scholar
  40. Smith, L.G. 2001. Plant cell division: building walls in the right places. Nature Rev. 2: 33–39.Google Scholar
  41. Spencer, J.A., Eliazer, S., Ilaria, R.L., Richardson, J.A. and Olson, E.N. 2000. Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J. Cell Biol. 150: 771–784.Google Scholar
  42. Spittle, C., Charasse, S., Larroque, C. and Cassimeris, L. 2000. The interaction of TOGp with microtubules and tubulin. J. Biol. Chem. 275: 20748–20753.Google Scholar
  43. Szarka, S., Fitch, M., Schaerer, S. and Moloney, M. 1995. Classification and expression of a family of cyclin gene homologues in Brassica napus. Plant Mol. Biol. 27: 263–275.Google Scholar
  44. Tournebize, R., Popov, A., Kinoshita, K., Ashford, A.J., Rybina, S., Pozniakovsky, A., Mayer, T.U., Walczak, C.E., Karsenti, E. and Hyman, A.A. 2000. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat. Cell Biol. 2: 13–19.Google Scholar
  45. Uchida, K., Muramatsu, T., Tachibana, K., Kishimoto, T. and Furuya, M. 1996. Isolation and characterisation of the cDNA for an A-like cyclin in Adiantum capillus-veneris. Plant Cell Physiol. 37: 825–832.Google Scholar
  46. Vantard, M., Schellenbaum, P., Fellous, A. and Lambert, A.-M. 1991. Characterisation of maize microtubule-associated proteins, one of which is immunologically related to tau. Biochemistry 30: 9334–9340.Google Scholar
  47. Vantard, M., Peter, C., Fellous, A., Schellenbaum, P. and Lambert, A.-M. 1994. Characterisation of a 100 kDa heat-stable microtubule-associated protein. Eur. J. Biochem. 220: 847–853.Google Scholar
  48. Vasquez, R.J., Gard, D.L. and Cassimeris, L. 1994. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol. 127: 985–993.Google Scholar
  49. Vasquez, R.J., Gard, D.L. and Cassimeris, L. 1999. Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell Motil. Cytoskel. 43: 310–321.Google Scholar
  50. Walczak, C.E. 2000. Microtubule dynamics and tubulin interacting proteins. Curr. Opin. Cell Biol. 12: 52–56.Google Scholar
  51. Walczak, C.E., Mitchison, T.J. and Desai, A.B. 1996. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84: 37–47.Google Scholar
  52. Wang, P.J. and Huffaker, T.C. 1997. Stu2p: a microtubule binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139: 1271–1280.Google Scholar
  53. Wani, M.C., Taylor, H.L., Wall, M.E., Coggon, P. and McPhail, A.T. 1971. Plant antitumor agents VI. The isolation and structure of taxol, a novel antileukimic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93: 2325–2327.Google Scholar
  54. Wasteneys, G.O. 2000. The cytoskeleton and growth polarity. Curr. Opin. Plant Biol. 3: 503–511.Google Scholar
  55. Whittington, A.T., Vugrek, O., Wei, K.-J., Hasenbein, N.G., Sugimoto, K., Rashbrooke, M.C. and Wasteneys, G.O. 2001. MOR1 is essential for organizing cortical microtubules in plants. Nature 411: 610–613.Google Scholar
  56. Yuan, M., Shaw, P.J., Warn, R.M. and Lloyd, C.W. 1994. Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Proc Natl. Acad. Sci. USA 91: 6050–6053.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Patrick J. Hussey
    • 1
  • Timothy J. Hawkins
    • 1
  • Hisako Igarashi
    • 1
  • Despina Kaloriti
    • 1
  • Andrei Smertenko
    • 1
  1. 1.Integrative Cell Biology Laboratory, School of Biological and Biomedical SciencesUniversity of DurhamDurhamUK

Personalised recommendations