Journal of Aquatic Ecosystem Stress and Recovery

, Volume 9, Issue 3, pp 213–225 | Cite as

Sediment quality of the Neuse River estuary, North Carolina: an integrated assessment of sediment contamination, toxicity, and condition of benthic fauna

  • W.L. Balthis
  • J.L. Hyland
  • G.I. Scott
  • M.H. Fulton
  • D.W. Bearden
  • M.D. Greene


A study of ecological conditions associatedwith bottom sediments in the Neuse Riverestuary, U.S.A. was undertaken during summer1998. Sampling of macroinfauna, sedimentsfor toxicity and chemical contaminant analyses,and physical properties of water was carriedout synoptically over a four-day period at 20stations from the mouth of the Neuse River atPamlico Sound to approximately 90 km upstream. The distribution and condition of benthicinfauna were found to vary in response tonatural and anthropogenic factors, and apparentassociations between degraded infaunalcondition and sediment contamination and/ortoxicity were observed over roughly half of thesampled area (7 stations, 47% area). With fewexceptions, degraded benthic conditions wereassociated with significant sedimentcontamination or toxicity. High sedimentcontaminant levels were found to occur almostexclusively in fine-grained, organic-rich muds. These results suggest that high organic loadingand chemical contaminant inputs to the NeuseRiver, coupled with low freshwater dischargerates and high residence times in the lowerestuary, have contributed to degraded benthicconditions at these sites.

benthic communities EMAP Neuse River Estuary NS&T sediment quality triad 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Rivers Foundation, 1997. Report on the 20 most threatened American rivers. American Rivers Foundation, New York.Google Scholar
  2. ASTM, 1993. Guide for conducting 10–day static sediment toxicity tests with marine and estuarine infaunal amphipods. ASTM E-1367–92. ASTM, Philadelphia, PA, 24 pp.Google Scholar
  3. Benninger, L. K. & J. T. Wells, 1993. Sources of sediment to the Neuse River estuary, North Carolina. Mar. Chem. 43: 137–156.Google Scholar
  4. Boesch, D. F., 1977. Application of numerical classification in ecological investigations of water pollution. United States Environmental Protection Agency, Grant No. R803599–01–1, ROAP/TASK No. 21 BEI, Corvallis Environmental Research Laboratory, Newport, Oregon, 115 pp.Google Scholar
  5. Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monog. 27: 320–349.Google Scholar
  6. Bulich, A. A., 1979. Use of luminescent bacteria for determining toxicity in aquatic environments. In: Marking, L. L. & R. A. Kimerle (eds), Aquatic Toxicology. ASTM STP 667. ASTM, Philadelphia, PA: 98–106.Google Scholar
  7. Carriker, M. R., 1967. Ecology of estuarine benthic invertebrates: a perspective. In: Lauff, G. (ed.), Estuaries. AAAS, Washington, D.C.: 442–487.Google Scholar
  8. Chapman, P. M., 1990. The sediment quality triad approach to determining pollution-induced degradation. Sci. Total Environ. 97(98): 815–825.Google Scholar
  9. Christian, R. R., J. N. Boyer & D. W. Stanley, 1991. Multi-year distribution patterns of nutrients within the Neuse River Estuary, North Carolina. Mar. Ecol. Prog. Ser. 71: 259–274.Google Scholar
  10. Cochran, W. G., 1977. Sampling Techniques. John Wiley and Sons, 448 pp.Google Scholar
  11. Dutka, B. J., N. Nyholm & J. Petersen, 1983. Comparison of several microbiological toxicity screening tests. Water Res. 17(10): 1363–1368.Google Scholar
  12. Fortner, A. R., M. Sanders & S. W. Lemire, 1996. Polynuclear aromatic hydrocarbon and trace metal burdens in sediment and the oyster, Crassostrea virginica Gmelin, from two high-salinity estuaries in South Carolina. In: Vernberg, F. J., W. B. Vernberg & T. Siewicki (eds), Sustainable Development in the Southeastern Costal Zone. University of South Carolina Press: 445–475.Google Scholar
  13. Heimbuch, D. G., H. T. Wilson, D. S. Robson & J. K. Summers, In review. Design-based methods for the estimation of the proportion of area degraded and its associated variance for ecological indicators used in large-scale estuarine monitoring. Water Resour. Res. (submitted).Google Scholar
  14. Hyland, J. L., W. L. Balthis, C. T. Hackney & M. Posey, 2000. Sediment quality of North Carolina estuaries: An integrative assessment of sediment contamination, toxicity, and condition of benthic fauna. J. Aq. Ecosys. Stress Recov. 8: 107–124.Google Scholar
  15. Hyland, J. L., R. F. Van Dolah & T. R. Snoots, 1999. Predicting stress in benthic communities of southeastern U.S. estuaries in relation to chemical contamination of sediments. Envir. Toxicol. Chem. 18(11): 2557–2564.Google Scholar
  16. Hyland, J. L., T. R. Snoots & W. L. Balthis, 1998. Sediment quality of estuaries in the southeastern U.S. Environ. Monitor. and Assess. 51: 331–343.Google Scholar
  17. Kinne, O., 1966. Physiological aspects of animal life in estuaries with special reference to salinity. Neth. J. Sea Res. 3: 222–244.Google Scholar
  18. Kinne, O., 1964. The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature salinity combinations. Oceanogr. Mar. Biol. Ann. Rev. 2: 281–339.Google Scholar
  19. Kucklick, J. R., S. K. Sivertsen, M. Sanders & G. I. Scott, 1997. Factors influencing polycyclic aromatic hydrocarbon distributions in South Carolina estuarine sediments. J. Exper. Mar. Biol. Ecol. 213(1): 13–29.Google Scholar
  20. Long, E. R, L. J. Field & D. D. MacDonald, 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Envir. Toxicol. Chem. 17: 714–727.Google Scholar
  21. Long, E. R., D. D. MacDonald, S. L. Smith & F. D. Calder, 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Envir. Man. 19: 81–97.Google Scholar
  22. Luettich, R. A. Jr., J. V. Reynolds-Fleming, J. E. McNinch & C. P. Buzzelli, In review. Circulation characteristics of the Neuse River Estuary, North Carolina. Estuaries (submitted).Google Scholar
  23. MacDonald, D. D, R. S. Carr, F. D. Calder, E. R. Long & C. G. Ingersoll, 1996. Development and evaluation of sediment quality guidelines for FL coastal waters. Ecotoxicol. 5: 253–278.Google Scholar
  24. Microbics Corporation, 1992a. Microtox® Manual (5 volume set). Carlsbad, CA, 128 pp.Google Scholar
  25. Microbics Corporation, 1992b. Microtox® Update Manual. Carlsbad, CA, 128 pp.Google Scholar
  26. MODMON, 1998. Mid-river salinity and dissolved oxygen results. Neuse River Estuary Modeling and Monitoring Project web site, Scholar
  27. North Carolina Environmental Management Commission, 1997. Neuse River Nutrient Sensitive Waters Management Strategy. North Carolina Department of Environment and Natural Resources, Raleigh, NC.Google Scholar
  28. North Carolina Division of Water Quality, 1998. 1998 Fish Kill Events. North Carolina Department of Environment and Natural Resources, Scholar
  29. Paerl, H. W., J. L. Pinckney, J. M. Fear, B. L. Peierls, 1998. Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River estuary, North Carolina, USA. Mar. Ecol. Prog. Ser. 166: 17–25.Google Scholar
  30. Pastorok, R. A. & D. S. Becker, 1989. Comparative sensitivity of bioassays for assessing sediment toxicity in Puget Sound. In: Proc. Conf. Oceans '89: The Global Ocean. Volume 2: Ocean Pollution, 18–21 September. Seattle, WA: 431–436.Google Scholar
  31. Plumb, R. H., 1981. Procedures for handling and chemical analysis of sediment and water samples. Technical Report EPA/CE-8 1–1. U.S. Environmental Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.Google Scholar
  32. Ringwood, A. H. & C. Keppler, 1998. Seed clam growth: An alternative sediment bioassay developed during EMAP in the Carolinian Province. Environ. Monitor. and Assess. 51: 247–257.Google Scholar
  33. Ringwood, A. H., R. Van Dolah, A. F. Holland & M. G. Delorenzo, 1995. Year one demonstration project studies conducted in the Carolinian Province by Marine Resources Research Institute: Results and summaries. Yr. 1 Final Report under NOAA Cooperative Agreement NA470A0177, S.C. Dept. Nat. Res. (MRRI), Charleston, SC.Google Scholar
  34. Sanders, M., 1995. Distribution of polycyclic aromatic hydrocarbons in oyster (Crassostrea virginica) and surface sediment from two estuaries in South Carolina. Arch. Envir. Contam. Toxicol. 28(4): 397–405.Google Scholar
  35. SAS Institute, 1999. SAS OnlineDoc® Version Eight. SAS Institute Inc., Cary, North Carolina, USA.Google Scholar
  36. Sneath, P. H. A. & R. R. Sokal, 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. W.H. Freeman, San Francisco, 573 pp.Google Scholar
  37. Tenore, K. R., 1971. Macrobenthos of the Pamlico River estuary, North Carolina. Ecol. Monogr. 42(1): 51–69.Google Scholar
  38. Tenore, K. R., D. B. Horton & T. W. Duke, 1968. Effects of bottom substrate on the brackish water bivalve, Rangia cuneata. Chesapeake Sci. 9: 238–248.Google Scholar
  39. U.S. Environmental Protection Agency, 1994. Cherry Point Marine Corps Air Station, EPA ID: NC1170027262. North Carolina National Priority List Site Summaries, U.S. EPA Region 4,Waste Management Division.Google Scholar
  40. Van Dolah, R. F., J. L. Hyland, A. F. Holland, J. S. Rosen & T. R. Snoots, 1999. A benthic index of biological integrity for assessing habitat quality in estuaries of the southeastern USA. Mar. Environ. Res. 48: 269–283.Google Scholar
  41. Wells, J. T. & S.-Y. Kim, 1991. Trapping and escape of fine-grained sediments: Neuse River estuary, N.C. In: Coastal Sediments '91, Proc. Specialty Conf. on Quantitative Approaches to Coastal Processes, 25–27 June. Seattle WA. ASCE, New York: 775–788.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • W.L. Balthis
    • 1
  • J.L. Hyland
    • 1
  • G.I. Scott
    • 1
  • M.H. Fulton
    • 1
  • D.W. Bearden
    • 1
  • M.D. Greene
    • 2
  1. 1.NOAANational Ocean Service (NCCOS/CCMA)CharlestonU.S.A
  2. 2.NOAANational Ocean Service (NCCOS/CCFHR)BeaufortU.S.A

Personalised recommendations