Annals of Global Analysis and Geometry

, Volume 23, Issue 1, pp 77–92

New Proof of the Cheeger–Müller Theorem

  • Maxim Braverman
Article

Abstract

We present a short analytic proof of the equality between the analytic and combinatorialtorsion. We use the same approach as in the proof given by Burghelea, Friedlander andKappeler, but avoid using the difficult Mayer-Vietoris type formula for the determinantsof elliptic operators. Instead, we provide a direct way of analyzing the behaviour of thedeterminant of the Witten deformation of the Laplacian. In particular, we show that thisdeterminant can be written as a sum of two terms, one of which has an asymptoticexpansion with computable coefficients and the other is very simple (no zeta-functionregularization is involved in its definition).

Ray–Singer analytic torsion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bismut, J.-M., Gillet, H. and Soulé, C.: Analytic torsion and holomorphic determinant bundles, i, Commun. Math. Phys. 115 (1988), 49–78.Google Scholar
  2. 2.
    Bismut, J.-M. and Zhang, W.: An extension of a theorem by Cheeger and Müller, Astérisque 205 (1992).Google Scholar
  3. 3.
    Bismut, J.-M. and Zhang, W.: Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal. 4 (1994), 136–212.Google Scholar
  4. 4.
    Burghelea, D., Friedlander, L. and Kappeler, T.: Mayer–Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107 (1992), 34–65.Google Scholar
  5. 5.
    Burghelea, D., Friedlander, L. and Kappeler, T.: Asymptotic expansion of the Witten deformation of the analytic torsion, J. Funct. Anal. 137 (1996), 320–363.Google Scholar
  6. 6.
    Burghelea, D., Friedlander, L., Kappeler, T. and McDonald, P.: Analytic and Reidemeister torsion for representations in finite type Hilbert modules, Geom. Funct. Anal. 6 (1996), 751–859.Google Scholar
  7. 7.
    Cheeger, J.: Analytic torsion and the heat equation, Ann. of Math. 109 (1979), 259–300.Google Scholar
  8. 8.
    Cycon, H. L., Froese, R. G., Kirsch, W. and Simon, B.: Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Texts Monographs Phys., Springer-Verlag, Berlin, 1987.Google Scholar
  9. 9.
    Helffer, B. and Sjöstrand, J.: Puits multiples en limite semi-classicue. IV. étude du complexe de Witten, Comm. Partial Differential Equations 10 (1985), 245–340.Google Scholar
  10. 10.
    Knudsen, F. F. and Mumford, D.: The projectivity of the moduli spaces of stable curves, I: Preliminaries on ‘det’ and ‘div’, Math. Scand. 39 (1976), 19–55.Google Scholar
  11. 11.
    Milnor, J.: Lectures on the h-Cobordism Theorem, Princeton Univ. Press, Princeton, NJ, 1965.Google Scholar
  12. 12.
    Milnor, J.: Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.Google Scholar
  13. 13.
    Müller, W.: Analytic torsion and R-torsion on Riemannian manifolds, Adv. Math. 28 (1978), 233–305.Google Scholar
  14. 14.
    Müller, W.: Analytic torsion and R-torsion for unimodular representation, J. Amer. Math. Soc. 6 (1993), 721–753.Google Scholar
  15. 15.
    Ray, D. B. and Singer, I. M.: R-torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971), 145–210.Google Scholar
  16. 16.
    Seeley, R.: Complex powers of elliptic operators, Proc. Sympos. Pure Appl. Math. Amer. Math. Soc. 10 (1967), 288–307.Google Scholar
  17. 17.
    Shubin, M. A.: Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1980.Google Scholar
  18. 18.
    Shubin, M. A.: Semiclassical asymptotics on covering manifolds and Morse inequalities, Geom. Funct. Anal. 6 (1996), 370–409.Google Scholar
  19. 19.
    Smale, S.: On gradient dynamical systems, Ann. of Math. 74 (1961), 199–206.Google Scholar
  20. 20.
    Smale, S.: Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.Google Scholar
  21. 21.
    Thom, R.: Sur une partition en cellules associée à une fonction sur une variété, C.R. Acad. Sci. Paris, Sér. A 228 (1949), 661–692.Google Scholar
  22. 22.
    Witten, E.: Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), 661–692.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Maxim Braverman
    • 1
  1. 1.Department of MathematicsNortheastern UniversityBostonU.S.A.

Personalised recommendations