Hyperfine Interactions

, Volume 139, Issue 1–4, pp 597–606 | Cite as

Thermally Induced Solid-State Syntheses of γ-Fe2O3 Nanoparticles and Their Transformation to α-Fe2O3 via ε-Fe2O3

  • R. Zboril
  • M. Mashlan
  • K. Barcova
  • M. Vujtek

Abstract

The thermally induced solid-state syntheses of γ-Fe2O3 nanoparticles from iron-bearing materials (FeSO4, Fe2(C2O4)3 and almandine garnet) are described. Magnetic properties, particles size and the mechanism of the structural change of γ-Fe2O3 nanoparticles have been investigated using 57Fe Mössbauer spectroscopy, X-ray powder diffraction (XRD) and atomic force microscopy (AFM). γ-Fe2O3 nanoparticles are transformed into hematite via ε-Fe2O3 as the intermediate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McMichael, R. D., Shull, R. D., Swartzendruber, L. J. and Bennett, L. H., J. Magn. Magn. Mater. 111 (1992), 29.Google Scholar
  2. 2.
    Häfeli, U., Schütt, W., Teller, J. and Zborowski, M. (eds), Scientific and Clinical Applications of Magnetic Carriers, Plenum, New York, 1997.Google Scholar
  3. 3.
    Günther, L., Phys. World 3 (1990), 28.Google Scholar
  4. 4.
    Shön, G. and Simon, U., Colloid Polym. Sci. 273 (1995), 101.Google Scholar
  5. 5.
    Nixon, L., Koval, C. A. and Noble, R. D., Chem. Mater. 4 (1992), 117.Google Scholar
  6. 6.
    Anton, I., J. Magn. Magn. Mater. 85 (1990), 219.Google Scholar
  7. 7.
    Livage, J., J. Phys. Chem. 42 (1981), 981.Google Scholar
  8. 8.
    Grimm, S., Schultz, M., Barth, S. and Müller, R., J. Mater. Sci. 32 (1997), 1083.Google Scholar
  9. 9.
    Batis-Landoulsi, H. and Vergnon, P., J. Mater. Sci. 18 (1983), 3399.Google Scholar
  10. 10.
    Pascal, C., Pascal, J. L., Favier, F., Elidrissi Moubtassim, M. L. and Payen, C., Chem. Mater. 11 (1999), 141.Google Scholar
  11. 11.
    Ennas, G., Musinu, A., Piccaluga, G., Zedda, D., Gatteschi, D., Sangregorio, C., Stanger, J. L., Concas, G. and Spano, G., Chem. Mater. 10 (1998), 495.Google Scholar
  12. 12.
    Cannas, C., Gatteschi, D., Musinu, A., Piccaluga, G. and Sangregorio, C., J. Phys. Chem. B 102 (1998), 7721.Google Scholar
  13. 13.
    Dormann, J. L., Viart, N., Rehspringer, J. L., Ezzir, A. and Niznansky, D., Hyp. Interact. 112 (1998), 89.Google Scholar
  14. 14.
    Martinez, B., Roig, A., Obradors, X., Mollins, E., Rouanet, A. and Monty, C., J. Appl. Phys. 79 (1996), 2580.Google Scholar
  15. 15.
    Ayyub, P., Multani, M., Barma, M., Palkar, V. R. and Vijayaraghavan, R., J. Phys. C 21 (1988), 2229.Google Scholar
  16. 16.
    Heiman, N. and Kazama, N. S., J. Appl. Phys. 50 (1979), 7633.Google Scholar
  17. 17.
    Tronc, E., Chanéac, C. and Jolivet, J. P., J. Solid State Chem. 139 (1998), 93.Google Scholar
  18. 18.
    Dézsi, I. and Coey, J. M. D., Phys. Status. Solidi A 15 (1973), 681.Google Scholar
  19. 19.
    Schrader, R. and Büttner, G., Z. Anorg. Allg. Chem. 320 (1963), 220.Google Scholar
  20. 20.
    Powder Diffraction File 1997, International Center for Diffraction Data, Pennsylvania, USA.Google Scholar
  21. 21.
    Wivel, C. and Mørup, S., J. Phys. E 14 (1981), 605.Google Scholar
  22. 22.
    de Bakker, P. M. A., de Grave, E., Vandenberghe, R. E. and Bowen, L. H., Hyp. Interact. 54 (1990), 493.Google Scholar
  23. 23.
    Haneda, K. and Morrish, A. H., Phys. Lett. 64 (1977), 259.Google Scholar
  24. 24.
    Serna, C. J., Bødker, F., Mørup, S., Morales, M. P., Sandiumenge, F. and Veintemillas-Verdaguer, S., Solid State Commun. 118 (2001), 437.Google Scholar
  25. 25.
    da Costa, G. M., de Grave, E. and Vandenberghe, R. E., Clay Clay Miner. 43 (1995), 562.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • R. Zboril
    • 1
  • M. Mashlan
    • 1
  • K. Barcova
    • 1
  • M. Vujtek
    • 1
  1. 1.Departments of Inorganic and Physical Chemistry and Experimental PhysicsPalacky UniversityOlomoucCzech Republic

Personalised recommendations