Boundary-Layer Meteorology

, Volume 106, Issue 3, pp 507–525

Quantifying Organization of Atmospheric Turbulent Eddy Motion Using Nonlinear Time Series Analysis

  • Karen H. Wesson
  • Gabriel G. Katul
  • Mario Siqueira
Article

Abstract

Using three methods from nonlinear dynamics, we contrast the level of organization inthe vertical wind velocity (w) time series collected in the atmospheric surface layer(ASL) and the canopy sublayer (CSL) for a wide range of atmospheric stability (ξ)conditions. The nonlinear methods applied include a modified Shannon entropy, waveletthresholding, and mutual information content. Time series measurements collected overa pine forest, a hardwood forest, a grass-covered forest clearing, and a bare soil, desertsurface were used for this purpose. The results from applying all three nonlinear timeseries measures suggest that w in the CSL is more organized than that in the ASL, and that as the flows in both layers evolve from near-neutral to near-convective conditions, the level of organization increases. Furthermore, we found that the degree of organization in w associated with changes in ξ is more significant than the transition from CSL to ASL.

Canopy turbulence Mutual information content Nonlinear time series analysis Organized motion Shannon entropy Wavelet thresholding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson, J. D., Parlange, M. B., Katul, G. G., Chu, C-R., Stricker, H., and Tyler, S.: 1995, 'Sensible Heat Flux fromArid Regions: A Simple Flux-Variance Method',Water Resour. Res. 31, 969–973.Google Scholar
  2. Baldocchi, D. D., Falge, E, Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W. U. K. T. P., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S.: 2001, 'FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities', Bull. Amer. Meteorol. Soc. 82, 2415–2434.Google Scholar
  3. Conklin, P.: 1994, 'Turbulent Wind, Temperature, and Pressure in a Mature Hardwood Canopy', Ph.D. Dissertation, School of the Environment, Duke University, Durham, N.C., 105 pp.Google Scholar
  4. Farge, M., Goirand, E., Meyer, Y., Pascal, F., and Wickerhauser, M. V.: 1992, 'Improved Predictability of Two-Dimensional Turbulent Flows UsingWavelet Packet Compression', Fluid Dyn. Res. 10, 229–250.Google Scholar
  5. Finnigan, J.: 2000, 'Turbulence inside Plant Canopies', Annu. Rev. Fluid Mech. 32, 519–571.Google Scholar
  6. Finnigan, J. and Shaw, R. H.: 2000, 'A Wind-Tunnel Study of Airflow in Waving Wheat: An EOF Analysis of the Structure of the Large-Eddy Motion', Boundary-Layer Meteorol. 96, 211–255.Google Scholar
  7. Fraser, A.M.: 1989, Information and Entropy in Strange Attractors', IEEE Trans. Inform. Theory 35, 245–262.Google Scholar
  8. Fraser, A. M. and Swinney, H. L.: 1986, 'Independent Coordinates for Strange Attractors from Mutual Information', Phys. Rev. A 33, 1134–1140.Google Scholar
  9. Gallego, M. C., García, J. A., and Cancillo, M. L.: 2001, 'Characterization of Atmospheric Turbulence by Dynamical Systems Techniques', Boundary-Layer Meteorol. 100, 375–392.Google Scholar
  10. Grassberger, P. and Procaccia, I.: 1983, 'Measuring the Strangeness of Strange Attractors', Physica D 9, 189–208.Google Scholar
  11. Havstad, J. W. and Ehlers, C. L.: 1989, 'Attractor Dimension of Nonstationary Dynamical Systems from Small Data Sets', Phys. Rev. A 39, 845–853.Google Scholar
  12. Jaramillo, G. P. and Puente, C. E.: 1993, 'Strange Attractors in Atmospheric Boundary-Layer Turbulence', Boundary-Layer Meteorol. 64, 175–197.Google Scholar
  13. Kaiser, J.: 1998, 'Climate Change-New Network Aims to Take the World's CO2 Pulse Source', Science 281, 506–507.Google Scholar
  14. Katul, G. G.: 1994, 'A Model for Sensible Heat-Flux Probability Density-Function for Near-Neutral and Slightly-Stable Atmospheric Flows', Boundary-Layer Meteorol. 71, 1–20.Google Scholar
  15. Katul, G. G. and Albertson, J. D.: 1999, 'Modeling CO2 Sources, Sinks, and Fluxes within a Forest Canopy', J. Geophys. Res. 104, 6081–6091.Google Scholar
  16. Katul, G. G. and Vidakovic, B.: 1996, 'The Partitioning of the Attached and Detached Eddy Motion in the Atmospheric Surface Layer Using Lorentz Wavelet Filtering', Boundary-Layer Meteorol. 77, 153–172.Google Scholar
  17. Katul, G. G. and Vidakovic, B.: 1998, 'Identification of Low-Dimensional Energy Containing/Flux Transporting Eddy Motion in the Atmospheric Surface Layer Using Wavelet Thresholding Methods', J. Atmos. Sci. 55, 377–389.Google Scholar
  18. Katul, G. G., Goltz, S. M., Hsieh, C-I., Cheng, Y., Mowry, F., and Sigmon, J.: 1995, 'Estimation of Surface Heat and Momentum Fluxes Using the Flux-Variance Method above Uniform and Non-Uniform Terrain', Boundary-Layer Meteorol. 74, 237–260.Google Scholar
  19. Katul, G. G., Hsieh, C-I., Bowling, D., Clark, K., Shurpali, N., Turnipseed, A., Albertson, J., Tu, K., Hollinger, D., Evans, B., Offerle, B., Anderson, D., Ellsworth, D., Vogel, C., and Oren, R.: 1999, 'Spatial Variability of Turbulent Fluxes in the Roughness Sublayer of an Even-Aged Pine Forest', Boundary-Layer Meterol. 93, 1–28.Google Scholar
  20. Katul, G. G., Hsieh, C-I., Kuhn, G., and Ellsworth, D.: 1997, 'Turbulent Eddy Motion at the Forest-Atmosphere Interface', J. Geophys. Res. 102(D12), 13409–13421.Google Scholar
  21. Katul, G. G., Schieldge, J., Hsieh, C-I., and Vidakovic, B.: 1998, 'Skin Temperature Perturbations Induced by Surface Layer Turbulence above a Grass Surface', Water Resour. Res. 34, 1265–1274.Google Scholar
  22. Lai, C.-T., Katul, G. G., Ellsworth, D. S., and Oren, R.: 2000a, 'Modeling Vegetation-Atmosphere CO2 Exchange by a Coupled Eulerian-Lagrangian Approach', Boundary-Layer Meteorol. 95, 91–122.Google Scholar
  23. Lai, C.-T., Katul, G. G., Oren, R., Ellsworth, D. S., and Schäfer, K.: 2000b, 'Modeling CO2 and Water Vapor Turbulent Flow Distributions within a Forest Canopy', J. Geophys. Res. 105, 26333–26351.Google Scholar
  24. Lorenz, E. N.: 1991, 'Dimension of Weather and Climate Attractors', Nature 353, 241–244.Google Scholar
  25. Nerenberg, M. A. H. and Essex, C.: 1990, 'Correlation Dimension and Systematic Geometric Effects', Phys. Rev. A. 42, 7065–7074.Google Scholar
  26. Palus, M.: 1993, 'Identifying and Quantifying Chaos Using Information-Theoretic Functionals', in A. S. Weigend and N. A. Gershenfeld (eds.), Time-Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley, Reading, MA, pp. 387–413.Google Scholar
  27. Pineda, F. J. and Sommerer, J. C.: 1993, 'Estimating Generalized Dimensions and Choosing Time Delays: A Fast Algorithm', in A. S. Weigend and N. A. Gershenfeld (eds.), Time-Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley, Reading, MA, pp. 367–385.Google Scholar
  28. Pool, R.: 1989, 'Is Something Strange about the Weather?', Science 243, 1290–1293.Google Scholar
  29. Procaccia, I.: 1988, 'Complex or Just Complicated?', Nature 333, 498–499.Google Scholar
  30. Raupach, M. R. and Thom, A. S.: 1981, 'Turbulence in and above Canopies', Annu. Rev. Fluid Mech. 13, 97–129.Google Scholar
  31. Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1989, 'Coherent Eddies in Vegetation Canopies', in Australian Conference on Heat and Mass Transfer, Christchurch, New Zealand, pp. 75–90.Google Scholar
  32. Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, 'Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing Layer Analogy', Boundary-Layer Meterol. 78, 351–382.Google Scholar
  33. Ruelle, D.: 1990, 'Deterministic Chaos: The Science and the Fiction', Proc. Roy. Soc. Lond. A. 427, 241–248.Google Scholar
  34. Shannon, C. E.: 1948, 'A Mathematical Theory of Communications', Bell Syst. Tech. J. 27, 379–623.Google Scholar
  35. Sivakumar, B.: 2000, 'Chaos Theory in Hydrology: Important Issues and Interpretations', J. Hydrol. 227, 1–20.Google Scholar
  36. Skilling, J. and Gull, S. F.: 1985, 'Algorithm and Applications', in C. R. Smyth and W. T. GrandyJr. (eds.), Maximum-Entropy and Bayesian Method in Inverse Problems, D. Reidel, Dordrecht, pp. 83–131.Google Scholar
  37. Smith, L. A.: 1988, 'Intrinsic Limits on Dimension Calculations', Phys. Lett. A 133, 283–288.Google Scholar
  38. Szilagyi, J., Katul, G. G., Parlange, M. B., Albertson, J. D., and Cahill, A. T.: 1996, 'The Local Effect of Intermittency on the Inertial Subrange Energy Spectrum of the Atmospheric Surface Layer', Boundary-Layer Meterol. 79, 35–50.Google Scholar
  39. Townsend, A. A.: 1976, The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, 429 pp.Google Scholar
  40. Tsonis, A. A. and Elsner, J. B.: 1988, 'The Weather Attractor over Very Short Timescales', Nature 333, 545–547.Google Scholar
  41. Vidakovic, B.: 1995, 'Unbalancing Data with Wavelet Transformations', Wavelet Applications in Signal and Image Processing III, Proc. SPIE 2569 2, 845–857.Google Scholar
  42. Wickerhauser, M. V., Farge, M., Goirand, E., Wesfried, E., and Cubillo, E.: 1994, 'Efficiency Comparison of Wavelet Packet and Adapted Local Cosine Bases for Compression of a Two-Dimensional Turbulent Flow', in C. K. Chui, L. Montefusco, and L. Puccio (eds.), Wavelets: Theory, Algorithms, and Applications, Academic Press, San Diego, pp. 509–531.Google Scholar
  43. Wijesekera, H. W. and Dillion, T. M.: 1997, 'Shannon Entropy as an Indicator of Age Turbulent Overturns in the Oceanic Thermocline', J. Geophys. Res. 102, 3279–3291.Google Scholar
  44. Williams, G. P.: 1997, Chaos Theory Tamed, Joseph Henry Press, Washington, DC, 499 pp.Google Scholar
  45. Xin, L., Fei, H., and Gang, L.: 2001, 'Characteristics of Chaotic Attractors', Boundary-Layer Meteorol. 99, 335–345.Google Scholar
  46. Zubair, L., Sreenivasan, K. R., and Wickerhauser, M. V.: 1992, 'Turbulent Signals and Images Using Wavelet-Packets', in T. Gatski, S. Sarkar, and C. G. Speziale (eds.), Studies in Turbulence, Springer-Verlag, New York, 602 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Karen H. Wesson
    • 1
    • 2
  • Gabriel G. Katul
    • 1
  • Mario Siqueira
    • 1
    • 3
  1. 1.School of the EnvironmentDuke UniversityDurham
  2. 2.The Cadmus Group, Inc.Chapel Hill
  3. 3.Department of Civil and Environmental EngineeringDuke UniversityDurhamU.S.A

Personalised recommendations