Biodegradation

, Volume 13, Issue 4, pp 239–250 | Cite as

Mathematical modeling of precipitationand dissolution reactions in microbiological systems

  • Bruce E. Rittmann
  • James E. Banaszak
  • Jeanne M. VanBriesen
  • Donald T. Reed
Article

Abstract

We expand the biogeochemical model CCBATCH to include a precipitation/dissolution sub-model that contains kinetic and equilibrium options. This advancement extends CCBATCH's usefulness to situations in which microbial reactions cause or are affected by formation or dissolution of a solid phase. The kinetic option employs a rate expression that explicitly includes the intrinsic kinetics for reaction ormass-transport control, the differencefrom thermodynamic equilibrium, and the aqueous concentration of the rate-limiting metal or ligand. The equilibrium feature can be used alone, and it also serves as check that the kinetic rate never is too fast and ``overshoots'' equilibrium. The features of the expanded CCBATCH are illustrated by an example in which the precipitation of Fe(OH)3(s) allows the biodegradation of citric acid, even though complexes are strong and not bioavailable. Precipitation releases citrate ligand, and biodegradation of the citrate increases the pH.

biogeochemistry calcium carbonate citrate dissolution ferric hydroxide modeling precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bae W & Rittmann BE (1996) A structured model of dual-limitation kinetics. Biotechnol. Bioeng. 49: 683-689Google Scholar
  2. Banaszak JE (1999) Coupling microbial and mineral-phase reactions. PhD dissertation, Dept. Civil Eng., Northwestern Univ., Evanston, IllinoisGoogle Scholar
  3. Bethke CM (1992) The geochemists' workbench, a users' guide to Rxn, act 2, tact, react. and Gtp[lot]. Dept. of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois.Google Scholar
  4. Borse GJ (1991) FORTRAN 77 and numerical methods for engineers, 2nd edn, PWS-KENT Publishing Co., Boston.Google Scholar
  5. Brady PV & House WA (1996) Surface-controlled dissolution and growth of minerals. In: PV Brady (Ed), Physics and Chemistry of Mineral Surfaces (pp. 225-306). CRC Press, Boca Raton, FloridaGoogle Scholar
  6. Brady PV & Zachara JM (1996) Geochemical applications of mineral surface science. In: PV Brady (Ed), Physics and Chemistry of Mineral Surfaces, (pp. 307-356). CRC Press, Boca Raton, FloridaGoogle Scholar
  7. Flint RA (1963) Fundamentals of Metal Casting, Addison-Wesley Co., Reading, MassachusettsGoogle Scholar
  8. Hamm RE, Shull CMJ & Grant DM (1954) Citrate complexes with iron (II) and iron (III). J. Amer. Chem. Soc. 76: 2111-2114Google Scholar
  9. Jordan, AD & Rammensee W (1996) Dissolution rates and activation energy for dissolution of brucite (001): a new method based on the microtopography of crystal surfaces. Geochimica et Cosmochimica Acta 60: 5055-5062Google Scholar
  10. Joshi-Topé G & Francis AJ (1995) Mechanisms of biodegradation of metal-citrate complexes by Pseudomonas fluorescens. J. Bacteriology 177: 1989-1993Google Scholar
  11. Kinzelbach W, Schäfer W & Herzer J (1991) Numerical modeling of natural and enhanced denitrification processes in aquifers. Water Resource Res. 27: 1123-1135Google Scholar
  12. Lasaga AC (1995) Fundamental approaches in describing mineral dissolution and precipitation rates. In: AF White & SL Brantley (Eds), Chemical Weathering Rates of Silicate Minerals Cycles. Mineralogical Soc. Amer. 31: 21-86Google Scholar
  13. Lasaga AC, Soler, JM, Ganor, J, Burch, TE & Nagy KL (1994) Chemical weathering rate laws and global geochemical cycles. Geochemica et Cosmochimica Acta 58: 2361-2386Google Scholar
  14. Lichtner PC (1985) Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems. Geochemica et Cosmochimica Acta 49: 779-800Google Scholar
  15. Lichtner PC (1996) Continuum formulation of multicomponentmultiphase reactive transport. In: PC Lichtner, CI Steefel & EH Oelkers (Eds), Rev. in Mineralogy, Vol. 34: Reactive Transport in Porous Media. Mineralogical Soc. AmerGoogle Scholar
  16. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbial. Rev. 55: 259-287Google Scholar
  17. Madigan MT, Martinko JM & Parker J (2000) Brock Biology of Microorganisms, 9th ed., Prentice-Hall, Inc., Upper Saddle Ridge, New JerseyGoogle Scholar
  18. McCarty PL (1972) Energetics of organic matter degradation. In: R. Mitchell (Ed), Water Pollution Microbiology (pp. 98-118). John Wiley & Sons, Inc., New YorkGoogle Scholar
  19. Morel FMM & Hering JG (1993) Principles and Applications of Aquatic Chemistry, John Wiley & Sons, Inc., New YorkGoogle Scholar
  20. Morel FMM & Morgan J (1972) A numerical method for computing equilibria in aqueous chemical systems. Environ. Sci. Technol. 6: 58-67Google Scholar
  21. Myers CR & Myers JM (1993) Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrafaciens. FEMS Microb. Letters 108: 127-131Google Scholar
  22. Paquette J & Reeder RJ (1995) Relationship between surface structure, growth mechanism and trace element incorporation in calcite. Geochemica et Cosmochimica Acta 59: 735-749Google Scholar
  23. Press WH, Teukolsky SA, Vettering WT & Flannery BP (1992) Numerical Recipes in FORTRAN: The Art of Scientific Computing. Cambridge University Press, New YorkGoogle Scholar
  24. Rittmann BE & McCarty PL (2001) Environmental Biotechnology: Principles and Applications. McGraw-Hill Book Co., New YorkGoogle Scholar
  25. Rittmann BE & VanBriesen JM (1996) Microbiological processes in reactive transport modeling. In: PC Lichtner, CI Steefel & EH Oelkers (Eds), Reactive Transport in Porous Media, Vol. 34 (pp. 311-334). Mineralogical Soc. Amer., Washington, DCGoogle Scholar
  26. Stumm W & Morgan JJ (1996) Aquatic Chemistry, 3rd edn John Wiley & Sons, Inc., New YorkGoogle Scholar
  27. VanBriesen JM & Rittmann BE (1999) Modeling speciation effects on biodegradation in mixed metal/chelate systems. Biodegradation 10: 315-330Google Scholar
  28. VanBriesen JM & Rittmann BE (2000) Mathematical description of microbiological reactions involving intermediates. Biotechnol. Bioengr. 67: 18-52.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Bruce E. Rittmann
    • 1
  • James E. Banaszak
    • 2
  • Jeanne M. VanBriesen
    • 3
  • Donald T. Reed
    • 4
  1. 1.Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Exponent Failure Analysis Assoc.ChicagoUSA
  3. 3.Department of Civil and Environmental EngineeringCarnegie-Mellon UniversityPittsburghUSA
  4. 4.PlainfieldUSA

Personalised recommendations