Space Debris

, Volume 2, Issue 2, pp 97–107 | Cite as

Modelling of Ejecta as a Space Debris Source

  • M. Bariteau
  • J.-C. Mandeville


When a micro-debris or a micrometeoroid impacts a spacecraft surface, a large number of secondary particles, called ejecta, are produced. These particles can contribute to a modification of the debris environment: either locally by the occurrence of secondary impacts on the components of complex and large space structures, or at great distance by the formation of a population of small orbital debris. This paper describes firstly, the ejecta overall production, and secondly, the lifetime and the orbital evolution of the particles. Finally the repartition of ejecta in LEO is computed. Some results describing the population as a function of size and altitude are presented.

hypervelocity impact modelling and simulation orbital debris secondary ejecta 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Bariteau. Prolifération des Débris Orbitaux: Production et Evolution des Particules Secondaires. Thèse de l'Ecole Nationale Supérieure de l'Aéronautique et de l'Espace, 2001.Google Scholar
  2. M. Bariteau, J.C. Mandeville and F. Schäfer. Ejecta Production Mechanisms on Painted Surfaces. Third European Conference on Space Debris, Darmstadt, Germany, March 19–21, 2001.Google Scholar
  3. D.E. Gault. Displaced Mass, Depth, Diameter, and Effects of Oblique Trajectories for Impact Craters Formed in Dense Crystalline Rocks. The Moon, 6: 32–44, 1973.Google Scholar
  4. E. Grün, H.A. Zook, H. Fechting and R.H. Giese. Collisional Balance of the Meteoritic Complex. Icarus 62: 244–272, 1985.Google Scholar
  5. D.P. Hamilton. Motion of Dust in a Planetary Magnetosphere: Orbit-Averaged Equations for Oblateness, Electromagnetic, and Radiation Forces with Application to Saturn's E Ring. Icarus, 101: 244–264, 1993.Google Scholar
  6. Jane's Space Directory, Eleventh Edition (1995–96), Philip Clark, ed., 1996.Google Scholar
  7. Jane's Space Directory, Thirteenth Edition (1997–98), Philip Clark, ed., 1998.Google Scholar
  8. D.J. Kessler et al. A Computer-Based Orbital Debris Environment Model for Spacecraft Design and Observations in Low-Earth Orbit. NASA Technical Memorandum 104825, 1996.Google Scholar
  9. H. Klinkrad, O. Tejedor and S. Vinals. The DISCOS Space Data Publication System. In Proceedings of the Second European Conference on Space Debris, ESA-SP 393, 367–373, 1997.Google Scholar
  10. H.J. Kramer. Observation of the Earth and its Environment. In Survey of Missions and Sensors, Third Enlarged Edition. Springer ed., 1996.Google Scholar
  11. J.D. O'Keefe and T.J. Ahrens. The Size Distributions of Fragments Ejected at a Given Velocity from Impact Craters. International Journal of Impact Engineering, 5: 493–499, 1987.Google Scholar
  12. M. Rival. Impacts Hypervitesse de Micrométéorites et Débris Orbitaux sur les Satellites: Formation d'Ejecta et Implications pour l'Environnement. Thèse de l'Ecole Nationale Supérieure de l'Aéronautique et de l'Espace, 1997.Google Scholar
  13. M. Rival and J.C. Mandeville. Modelling of Ejecta Produced upon Hypervelocity Impacts. Space Debris, 1: 45–57, 1999.Google Scholar
  14. P. Wegener, J. Bendisch, K.D. Bunte and H. Sdunnus. Upgrade of the ESA MASTER Model. Final Report of ESOC Contract 12318/97/D/IM, 2000.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  1. 1.ONERA/DESPToulouseFrance

Personalised recommendations