Journal of Gambling Studies

, Volume 19, Issue 1, pp 23–51 | Cite as

Risky Business: Emotion, Decision-Making, and Addiction

  • Antoine Bechara


Although metabolic abnormalities in the orbitofrontal cortex have been observed in substance dependent individuals (SDI) for several years, very little attention was paid to the role of this brain region in addiction. However, patients with damage to the ventromedial (VM) sector of the prefrontal cortex and SDI show similar behaviors. (1) They often deny, or they are not aware, that they have a problem. (2) When faced with a choice to pursue a course of action that brings an immediate reward at the risk of incurring future negative consequences, they choose the immediate reward and ignore the future consequences. Studies of patients with bilateral lesions of the VM prefrontal cortex support the view that the process of decision-making depends in many important ways on neural substrates that regulate homeostasis, emotion, and feeling. Parallel lines of study have revealed that VM cortex dysfunction is also evident in subgroups of individuals who are addicted to substances. Thus, understanding the neural mechanisms of decision-making has direct implications for understanding disorders of addiction and pathological gambling, and the switch from a controlled to uncontrolled and compulsive behavior. On the clinical front, the approach to treat addictive disorders has been dominated by a diagnostic system that focuses on behaviors, physical symptoms, or choice of drugs. The article emphasizes the concept of using neurocognitive criteria for subtyping addictive disorders. This is a significant paradigm shift with significant implications for guiding diagnosis and treatment. Using neurocognitive criteria could lead to more accurate subtyping of addictive disorders, and perhaps serve as a guide for more specific, and potentially more successful, behavioral and pharmacological interventions.

decision-making addiction gambling task orbitofrontal cortex pathological gambling 


  1. Ackerly, S. S., & Benton, A. L. (1948). Report of a case of bilateral frontal lobe defect. Proceedings of the Association for Research in Nervous and Mental Disease (Baltimore), 27, 479–504.Google Scholar
  2. Ainslie, G. (2000). A research-based theory of addictive motivation. Law and Philosophy, 19(1), 77–115.Google Scholar
  3. Anderson, S. W., Damasio, H., Jones, R. D., & Tranel, D. (1991). Wisconsin card sorting test performance as a measure of frontal lobe damage. Journal of Clinical and Experimental Neuropsychology, 3, 909–922.Google Scholar
  4. Bartzokis, G., Lu, P. H., Beckson, M., Rapoport, R., Grant, S., Wiseman, E. J., & London, E. D. (2000). Abstinence from cocaine reduces high-risk responses on a gambling task. Neuropsychopharmacology, 22(1), 102–103.Google Scholar
  5. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.Google Scholar
  6. Bechara, A., & Damasio, H. (2002). Decision-Making And Addiction (Part I): Impaired Activation of Somatic States in Substance Dependent Individuals when Pondering Decisions with Negative Future Consequences. Neuropsychologia, 40(10), 1675–1689.Google Scholar
  7. Bechara, A., Damasio, H., & Damasio, A. (2001). Manipulation of dopamine and serotonin causes different effects on covert and overt decision-making. Society for Neuroscience Abstracts, 27.Google Scholar
  8. Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision-making, and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295–307.Google Scholar
  9. Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. The Journal of Neuroscience, 19(13), 5473–5481.Google Scholar
  10. Bechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. The Journal of Neuroscience, 18, 428–437.Google Scholar
  11. Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S. W., & Nathan, P. E. (2001). Decisionmaking deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376–389.Google Scholar
  12. Bechara, A., Dolan, S., & Hindes, A. (2002). Decision-Making and Addiction (Part II): Myopia For The Future Or Hypersensitivity To Reward? Neuropsychologia, 40(10), 1690–1705.Google Scholar
  13. Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making impairment of patients with bilateral lesions of the ventromedial prefrontal cortex. Brain, 123, 2189–2202.Google Scholar
  14. Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215–225.Google Scholar
  15. Breiter, H. C., Aharon, I., Kahneman, D., Dale, A., & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 30(2), 619–639.Google Scholar
  16. Breiter, H. C., & Rosen, B. R. (1999). Functional magnetic resonance imaging of brain reward circuitry in the human, Advancing From the Ventral Striatum to the Extended Amygdala (Vol. 877, pp. 523–547).Google Scholar
  17. Brickner, R. M. (1932). An interpretation of frontal lobe function based upon the study of a case of partial bilateral frontal lobectomy. Localization of function in the cerebral cortex. Proceedings of the Association for Research in Nervous and Mental Disease (Baltimore), 13, 259–351.Google Scholar
  18. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.Google Scholar
  19. Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280 (5364), 747–749.Google Scholar
  20. Cavedini, P., D'Annucci, A., Ubbilali, A., Zorzi, C., Bassi, T., Glordani, S., & Bellodi, L. (2001). Pathological gambling and obsessive-compulsive spectrum disorder: neuropsychological evidence. The World Journal of Bilogical Psychiatry, 2(Supplement 1), 2315.Google Scholar
  21. Childress, A. R., Mozley, P. D., McElgin, W., Fitzgerald, J., Reivich, M., & O'Brien, C. P. (1999). Limbic activation during cue-induced cocaine craving. American Journal of Psychiatry, 156, 11–18.Google Scholar
  22. Cremer von Schinkel, J. (2001). Do pathological gamblers suffer from “brain block”? 7th World Congress of Biological Psychiatry (July 3).Google Scholar
  23. Damasio, A. R. (1994). Descartes' Error: Emotion, Reason, and the Human Brain. New York: Grosset/Putnam.Google Scholar
  24. Damasio, A. R. (1995). Toward a neurobiology of emotion and feeling: operational concepts and hypotheses. The Neuroscientist, 1, 19–25.Google Scholar
  25. Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London (Biology), 351, 1413–1420.Google Scholar
  26. Damasio, A. R., Grabowski, T. G., Bechara, A., Damasio, H., Ponto, L. L. B., Parvizi, J., & Hichwa, R. D. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3(10), 1049–1056.Google Scholar
  27. Damasio, A. R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioral Brain Research, 41, 81–94.Google Scholar
  28. Damasio, A. R., Tranel, D., & Damasio, H. (1991). Somatic markers and the guidance of behavior: Theory and preliminary testing. In H. S. Levin & H. M. Eisenberg & A. L. Benton (Eds.), Frontal Lobe Function and Dysfunction (pp. 217–229). New York: Oxford University Press.Google Scholar
  29. Damasio, H. (1995). Human Brain Anatomy in Computerized Images. New York: Oxford University Press.Google Scholar
  30. Damasio, H., Grabowski, T., Frank, R., Galburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 1102–1104.Google Scholar
  31. Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behavior. Brain, 118, 279–306.Google Scholar
  32. Dias, R., Robbins, T. W., & Roberts, A. C. (1996). Dissociation in prefrontal cortex of affective and attentional shifts. Nature, 380, 69–72.Google Scholar
  33. Dias, R., Robbins, T. W., & Roberts, A. C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restrictions to novel situations and independence from “on-line” processing. Journal of Neuroscience, 17, 9285–9297.Google Scholar
  34. Eslinger, P. J., & Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology, 35, 1731–1741.Google Scholar
  35. Everitt, B. J., Parkinson, J. A., Olmstead, M. C., Arroyo, M., Robledo, P., & Robbins, T. W. (1999). Associative processes in addiction and reward: the role of amygdala and ventral striatal subsystems. Annals of the New York Academy of Science (Advancing from the Ventral Striatum to the Extended Amygdala), 877, 412–438.Google Scholar
  36. Frith, C. D., Friston, K., Liddle, P. F., & Frackowiak, R. S. J. (1991). Willed Action and the Prefrontal Cortex in Man—A Study With PET. Proceedings of the Royal Society of London Series B-Biological Sciences, 244 (1311), 241–2Google Scholar
  37. Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proceedings of the National Academy of Science USA, 96(14), 8301–8306.Google Scholar
  38. Grant, S., Contoreggi, C., & London, E. D. (1997). Drug abusers show impaired performance on a test of orbitofrontal function. Society for Neuroscience Abstracts, 23, 1943.Google Scholar
  39. Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision-making. Neuropsychologia, 38(8), 1180–1187.Google Scholar
  40. Grant, S. J., Bonson, K. R., Contoreggi, C. C., & London, E. D. (1999). Activation of the ventromedial prefrontal cortex correlates with gambling task performance: A FDG-PET study. Society for Neuroscience Abstracts, 25(2), 1551.Google Scholar
  41. Green, L., Fristoe, N., & Myerson, J. (1994). Temporal Discounting and Preference Reversals in Choice Between Delayed Outcomes. Psychonomic Bulletin & Review, 1(3), 383–389.Google Scholar
  42. Green, L., Fry, A., & Myerson, J. (1994). Discounting of delayed rewards: a life-span comparison. Psychological Science, 5, 33–36.Google Scholar
  43. Harlow, J. M. (1848). Passage of an iron bar through the head. Boston Medical and Surgical Journal, 39, 389–393.Google Scholar
  44. Harlow, J. M. (1868). Recovery from the passage of an iron bar through the head. Publications of the Massachusetts Medical Society, 2, 327–347.Google Scholar
  45. Heyman, G. M. (1996). Resolving the contradictions of addiction. Behavioral and Brain Sciences, 19(4), 561–610.Google Scholar
  46. Jentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostraital dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology, 146(4), 373–390.Google Scholar
  47. Johnson, B. A., Roache, J. D., Javors, M. A., DiClemente, C. C., Cloninger, C. R., Prihoda, T. J., Bordnick, P. S., Ait-Daoud, N., & Hensler, J. (2000). Ondansetron for reduction of drinking among biologically predisposed alcoholic patients—A randomized controlled trial. Jama-Journal of the American Medical Association, 284(8), 963–971.Google Scholar
  48. Kirby, K. N., & Herrnstein, R. J. (1995). Preference Reversals Due to Myopic Discounting of Delayed Reward. Psychological Science, 6(2), 83–89.Google Scholar
  49. Konishi, S., Kawazu, M., Uchida, I., Kikyo, H., Asakura, I., & Miyashita, Y. (1999). Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test. Cerebral Cortex, 9(7), 745–753.Google Scholar
  50. Koob, G. F. (1999). The role of the striatopallidal and extended amygdala systems in drug addiction. Annals of the New York Academy of Science (Advancing from the Ventral Striatum to the Extended Amygdala), 877, 445–460.Google Scholar
  51. Lombardi, W. J., Andreason, P. J., Sirocco, K. Y., Rio, D. E., Gross, R. E., Umhau, J. C., & Hommer, D. W. (1999). Wisconsin card sorting test performance following head injury: Dorsolateral fronto-striatal circuit activity predicts perseveration. Journal of Clinical and Experimental Neuropsychology, 21(1), 2–16.Google Scholar
  52. London, E. D., Ernst, M., Grant, S., Bonson, K., & Weinstein, A. (2000). Orbitofrontal cortex and human drug abuse: functional imaging. Cerebral Cortex, 10(3), 334–342.Google Scholar
  53. Maddock, R. J. (1999). The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends in Neurosciences, 22(7), 310–320.Google Scholar
  54. Mazas, C. A., Finn, P. R., & Steinmetz, J. E. (2000). Decision making biases, antisocial personality, and early-onset alcoholism. Alcoholism: Clinical and Experimental Research, 24(7), 1036–1040.Google Scholar
  55. Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90–100.Google Scholar
  56. Monterosso, J., Ehrman, R., Napier, K., O'Brien, C. P., & Childress, A. R. (2001). Three Decision-Making Tasks in Cocaine-Dependent Patients: Do they measure the same construct? Addiction, 96(12), 1825–1837.Google Scholar
  57. Owen, A. M., Roberts, A. C., Hodges, J. R., Summers, B. A., Polkey, C. E., & Robbins, T. W. (1993). Contrasting Mechanisms of Impaired Attentional Set-Shifting in Patients With Frontal-Lobe Damage or Parkinsons-Disease. Brain, 116, 1159–1175.Google Scholar
  58. Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J., & Robbins, T. W. (1991). Extra-Dimensional Versus Intra-Dimensional Set Shifting Performance Following Frontal-Lobe Excisions, Temporal-Lobe Excisions or Amygdalo-Hippocampectomy in Man. Neuropsychologia, 29(10), 993–1006.Google Scholar
  59. Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The Anterior Cingulate Cortex Mediates Processing Selection in the Stroop Attentional Conflict Paradigm. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 256–259.Google Scholar
  60. Petry, N. M. (2001). Substance abuse, pathological gambling, and impulsiveness. Drug and Alcohol Dependence, 63(1), 29–38.Google Scholar
  61. Petry, N. M., Bickel, W. K., & Arnett, M. (1998). Shortened time horizons and insensitivity to future consequences in heroin addicts. Addiction, 93(5), 729–738.Google Scholar
  62. Potenza, M. N., & Wilber, M. K. (2001). Neuroimaging studies of pathological gambling and substance dependence. Psychiatric Times, 17(10).Google Scholar
  63. Rahman, S., Sahakian, B. J., Rudolph, N. C., Rogers, R. D., & Robbins, T. W. (2001). Decision making and neuropsychiatry. Trends in Cognitive Sciences, 6(5), 271–277.Google Scholar
  64. Rogers, R. D., Everitt, B. J., Baldacchino, A., Blackshaw, A. J., Swainson, R., Wynne, K., Baker, N. B., Hunter, J., Carthy, T., Booker, E., London, M., Deakin, J. F. W., Sahakian, B. J., & Robbins, T. W. (1999). Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophandepleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20(4), 322–339.Google Scholar
  65. Rogers, R. D., Owen, A. M., Middleton, H. C., Williams, E. J., Pickard, J. D., Sahakian, B. J., & Robbins, T. W. (1999). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. Journal of Neuroscience, 20, 9029–9038.Google Scholar
  66. Rolls, E. T., Hornak, J., Wade, D., & McGrath, J. (1994). Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. Journal of Neurology, Neurosurgery, and Psychiatry, 57, 1518–1524.Google Scholar
  67. Stapleton, J. M., Morgan, M. J., Phillips, R. L., Wong, D. F., Yung, B. C. K., Shaya, E. K., Dannals, R. F., Liu, X., Grayson, R. L., & London, E. D. (1995). Cerebral glucose utilization in polysubstance abuse. Neuropsychopharmacology, 13(1), 22–31.Google Scholar
  68. Volkow, N. D., & Fowler, J. S. (2000). Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cerebral Cortex, 10(3), 318–325.Google Scholar
  69. Volkow, N. D., Fowler, J. S., Wolf, A. P., Hitzemann, R., Dewey, S., Bendriem, B., Alpert, R., & Hoff, A. (1991). Changes in brain glucose metabolism in cocaine dependence and withdrawal. American Journal of Psychiatry, 148, 621–626.Google Scholar
  70. Vuchinich, R. E., & Tucker, J. A. (1988). Contributions From Behavioral Theories of Choice to an Analysis of Alcohol-Abuse. Journal of Abnormal Psychology, 97(2), 181–195.Google Scholar
  71. Welt, L. (1888). Uber Charaktervaranderungen des Menschen infoldge von Lasionen des Stirnhirns. Dtsch. Arch. Klin. Med., 42, 339–390.Google Scholar

Copyright information

© Human Sciences Press, Inc. 2003

Authors and Affiliations

  • Antoine Bechara
    • 1
  1. 1.Department of NeurologyUniversity of IowaIowa CityUSA

Personalised recommendations