, Volume 480, Issue 1–3, pp 15–28 | Cite as

Steemann Nielsen and the zooplankton

  • Karl Banse


E. Steemann Nielsen is remembered by most biological oceanographers and limnologists as having introduced the 14C method for measuring photosynthesis in 1952. The present paper is to recall that he was interested in the phytoplankton as part of the plankton community and was much aware of the role of grazing in affecting, if not determining, the concentrations of phytoplankton and, thus, also its rate of production. His principal statements to this effect were made with the open, oligotrophic subtropical and tropical oceans in mind where phytoplankton concentrations exhibit little seasonal change. This paper shows that Steemann Nielsen's sentiment also applies to non-static situations, especially phytoplankton blooms. Of the blooms in Cushing's North Sea Calanus patches of 1949 and 1954 and the two low-latitude, open-sea iron fertilization experiments (IronEx I, II) of the 1990s, more than half or even most of the newly formed cells were lost daily. In these examples, the same water was revisited, mixing was considered, and sinking was an unimportant loss term, so that grazing was the principal cause of mortality. Because of the grazing losses and the subsequent regeneration the CO2 draw down in the fertilized water was much lower than the 14C uptake. Moreover the examples show that over the course of the blooms, the rate and even the sign of temporal change of phytoplankton abundance had little relation to the rate of cell division, as already postulated by Riley's 1946 model of the seasonal cycle of phytoplankton on Georges Bank. Thus, in most situations in the open sea and, presumably, large lakes, the rates of cell division (instead of photosynthesis by itself) and of mortality (most often from grazing) are needed for understanding and predicting the temporal change of phytoplankton abundance, a principal goal of biological oceanography. The mechanism maintaining the actual abundance of phytoplankton in the quasi-steady state prevailing over most of the ocean much of the time is still unclear.

grazing role phytoplankton stock grazing losses CO2 draw down 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, F. A. J. & E. I. Butler, 1968. Chemical changes in sea water off Plymouth during the years 1962 to 1965. J. mar. biol. Ass. U.K 48: 153-160.Google Scholar
  2. Banse, K., 1992. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Production and Biogeochemical Cycles in the Sea. Plenum Press, New York: 409-440.Google Scholar
  3. Banse, K., 1994. Grazing and zooplankton production as key controls of phytoplankton production in the open ocean. Oceanography 7: 13-20.Google Scholar
  4. Banse, K., 1995a. Community response to IRONEX. Nature 375: 112.Google Scholar
  5. Banse, K., 1995b. Zooplankton: pivotal role in the control of ocean production. ICES J. mar. Sci. 52: 265-277.Google Scholar
  6. Banse, K., 1996. Low seasonality of low concentrations of surface chlorophyll in the Subantarctic water ring: underwater irradiance, iron, or grazing? Prog. Oceanogr. 37: 241-291.Google Scholar
  7. Behrenfeld, M. J., A. J. Bale, Z. S. Kolber, J. Aiken & P. G. Falkowski, 1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383: 508-511.Google Scholar
  8. Buesseler, K. O., M. P. Bacon, J. K. Cochran & H. D. Livingston, 1992. Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from 234Th: 238U disequilibra. Deep-Sea Res. I 39: 1115-1137.Google Scholar
  9. Calbet, A. & M. R. Landry, 1999. Mesozooplankton influences on the microbial food web: Direct and indirect trophic interactions in the oligotrophic open ocean. Limnol. Oceanogr. 44: 1370-1380.Google Scholar
  10. Caron, D. A. & M. R. Dennett, 1999. Phytoplankton growth and mortality during the 1995 Northeast Monsoon and Spring Intermonsoon in the Arabian Sea. Deep-Sea Res. II 46: 1665-1690.Google Scholar
  11. Chan, A. T., 1980. Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. II. Relationship between photosynthesis, growth, and carbon/ chlorophyll a ratio. J. Phycol. 16: 428-432.Google Scholar
  12. Coale, K. H. & 18 others, 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383: 495-501.Google Scholar
  13. Conover, S. A. M., 1956. Oceanography of Long Island Sound, 1952–1954. IV. Phytoplankton. Bull. Bingham Oceanogr. Coll. 15: 62-112.Google Scholar
  14. Cullen, J. J., 1995. Status of the iron hypothesis after the open-ocean experiment. Limnol. Oceanogr. 40: 1336-1343.Google Scholar
  15. Cushing, D. H., 1953. Studies on plankton populations. J. Cons. 19: 3-22.Google Scholar
  16. Cushing, D. H., 1955. Production and a pelagic fishery. Fish. Invest., Ser. II, 18 (7): 1-104.Google Scholar
  17. Cushing, D. H., 1959a. On the nature of production in the sea. Fish. Invest., Ser. II, 22 (6): 1-40.Google Scholar
  18. Cushing, D. H., 1959b. The seasonal variation in oceanic production as a problem in population dynamics. J. Cons. 24: 454-464.Google Scholar
  19. Cushing, D. H., 1963. Studies on a Calanus patch. V. The production cruises in 1954: summary and conclusions. J. mar. biol. Ass. U.K. 43: 387-389.Google Scholar
  20. Cushing, D. H., 1995. Population Production and Regulation in the Sea: a Fisheries Perspective. Cambridge University Press, Cambridge: 354 pp.Google Scholar
  21. Cushing, D. H. & T. Vucetic, 1963. Studies on a Calanus patch. III. The quantity of food eaten by Calanus finmarchicus. J. mar. biol. Ass. U.K. 43: 349-371.Google Scholar
  22. Ducklow, H. W & R. P. Harris, 1993. Introduction to the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res. II, 40: 1-8.Google Scholar
  23. Eberlein, K., G. Kattner, U. Brockmann & K. D. Hammer, 1980. Nitrogen and phosphorus in different water layers at the central station during FLEX '76. ‘Meteor’ Forsch.-Ergebn., Reihe A, 22: 87-98.Google Scholar
  24. Falkowski, P. G. & Z. Kolber, 1993. Estimation of phytoplankton photosynthesis by active fluorescence. ICES mar. Sci. Symp. 197: 92-103.Google Scholar
  25. Fransz, H. G. & W. G. van Arkel, 1980. Zooplankton activity during and after the phytoplankton spring bloom at the central station in the FLEX box, northern North Sea, with special reference to the calanoid copepod Calanus finmarchicus (Gunn.). ‘Meteor’ Forsch.-Ergebn., Reihe A, 22: 113-121.Google Scholar
  26. Frost, B. W., 1980. Grazing. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell Scientific Publications, Oxford, England: 465-491.Google Scholar
  27. Frost, B. W., 1984. Utilization of phytoplankton production in the surface layer. In Global Ocean Flux Study, Proceedings of a Workshop. National Academy of Science, National Academy Press, Washington, D.C.: 125-135.Google Scholar
  28. Frost, B. W., 1987. Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. Mar. Ecol. Prog. Ser. 39: 49-68.Google Scholar
  29. Frost, B. W., 1991. The role of grazing in nutrient-rich areas of the open sea. Limnol. Oceanogr. 36: 1616-1630.Google Scholar
  30. Frost, B.W., 1993. A modeling study of processes regulating plankton standing stock and production in the open subarctic Pacific Ocean. Progr. Oceanogr. 32: 17-56.Google Scholar
  31. Frost, B. W. & N. C. Franzen, 1992. Grazing and iron limitation in the control of phytoplankton stock and nutrient concentration: a chemostat analogue of the Pacific equatorial upwelling zone. Mar. Ecol. Prog. Ser. 83: 291-303.Google Scholar
  32. Geider, R. J., H. L. MacIntyre & T. M. Kana, 1998. A dynamic regulatory model of phytoplankton acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 43: 679-694.Google Scholar
  33. Gieskes W. W. C. & G. W. Kraay, 1975. The phytoplankton spring bloom in Dutch coastal waters of the North Sea. Neth. J. Sea Res. 9: 166-196.Google Scholar
  34. Goericke, R. & N. A. Welschmeyer, 1993. The chlorophyll-labeling method: measuring specific rates of chlorophyll a synthesis in cultures and in the open ocean. Limnol. Oceanogr. 38: 80-95.Google Scholar
  35. Goericke, R.& N. A. Welschmeyer, 1998. Response of Sargasso Sea phytoplankton biomass, growth rates and primary production to seasonally varying physical forcing. J. Plankton Res. 20: 2223-2249.Google Scholar
  36. Hardy, A. C. & E. R. Gunther, 1935. The plankton of the South Georgia whaling grounds and adjacent waters. Discovery Repts. 11: 1-456.Google Scholar
  37. Harrison, W. G., E. J. H. Head, E. P. W. Horne, B. Irwin, W. K. W. Li, A. R. Longhurst, M. A. Paranjape & T. Platt, 1993. the western North Atlantic Bloom Experiment. Deep-Sea Res. II 40: 279-305.Google Scholar
  38. Harvey, H. W., 1934. Annual variation of planktonic vegetation. J. mar. biol. Ass. U.K., N.S., 19: 775-792.Google Scholar
  39. Harvey, H.W., L. H. N. Cooper, M. V. Lebour & F. S. Russell, 1935. Plankton production and its control. J. mar. biol. Ass. U.K., N.S., 20: 407-441.Google Scholar
  40. Hentschel, E., 1933/1936. Allgemeine Biologie des Südatlantischen Ozeans. Wiss. Ergebn. Dtsch. Atl. Exp. ‘Meteor’ 1925-1927 11: 1-344.Google Scholar
  41. Kiørboe, T., 1998. Population regulation and role of mesozooplankton in shaping marine food webs. Hydrobiologia 363: 13-27.Google Scholar
  42. (Also as T. Tamminen & H. Kuosa (eds), Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling. Kluwer Academic Publishers, Dordrecht.)Google Scholar
  43. Kolber, Z., R. T. Barber, K. H. Coale, S. E. Fitzwater, R. M. Greene, K. S. Johnson, S. Lindley & P. G. Falkowski, 1994. Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371: 145-149.Google Scholar
  44. Krause, M. & G. Radach, 1980. On the succession of developmental stages of herbivorous zooplankton in the northern North Sea during FLEX '76. 1. First statements about the main groups of the zooplankton community. ‘Meteor’ Forsch.-Ergebn., Reihe A, 22: 133-149.Google Scholar
  45. Landry, M. R., R. T. Barber, R. R. Bidigare, F. Chai, K. H. Coale, H. G. Dam, M. R. Lewis, S. T. Lindley, J. J. McCarthy, M. R. Roman, D. K. Stoecker, P. G. Verity & J. R. White, 1997. Iron and grazing constraints on primary production in the central equatorial Pacific: an EqPac synthesis. Limnol. Oceanogr. 42: 405-418.Google Scholar
  46. Landry, M. R., S. L. Brown, L. Campbell, J. Constantinou & H. Liu, 1998. Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing. Deep-Sea Res. II 45: 2353-2368.Google Scholar
  47. Landry, M. R., J. Constantinou, M. Latasa, S. L. Brown, R. R. Bidigare & M. E. Ondrusek, 2000b. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazing. Mar. Ecol. Prog. Ser. 201: 57-72Google Scholar
  48. Landry, M. R., B. C. Monger & K. E. Selph, 1993. Timedependency of microzooplankton grazing and phytoplankton growth in the subarctic Pacific. Prog. Oceanogr. 32: 205-222.Google Scholar
  49. Landry, M. R., M. E. Ondrusek, S. J. Tanner, S. L. Brown, J. Constantinou, R. R. Bidigare, K. H. Coale & S. Fitzwater, 2000a. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201: 27-42.Google Scholar
  50. Law, C. S., A. J. Watson, M. I. Liddocoat & T. Stanton, 1998. Sulphur hexafluoride as a tracer of biogeochemical and physical processes in an open-ocean iron fertilisation experiment. Deep-Sea Res. II 45: 977-994.Google Scholar
  51. Lenz, J., A. Morales & J. Gunkel, 1993. Mesozooplankton standing stock during the North Atlantic spring bloom study in 1989 and its potential grazing pressure on phytoplankton: a comparison between low, medium and high latitudes. Deep-Sea Res. II, 40: 559-572.Google Scholar
  52. Lessard, E. J. & M. C. Murrell, 1998. Microzooplankton herbivory and phytoplankton growth in the northwestern Sargasso Sea. Aquat. microb. Ecol. 16: 173-188.Google Scholar
  53. Letelier, R. M., J. E. Dore, C. D. Winn & D.M. Karl, 1996. Seasonal and interannual variations in photosynthetic carbon assimilation at Station ALOHA. Deep-Sea Res. II 43: 467-490.Google Scholar
  54. Lindley S. T. & R. T. Barber, 1998. Phytoplankton response to natural and experimental iron addition. Deep-Sea Res. II 45: 1135-1150.Google Scholar
  55. Lochte, K., H. W. Ducklow, M. J. R. Fasham & C. Stienen, 1993. Plankton succession and carbon cycling at 47∘ N 20∘ W during the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res. II, 40: 91-114.Google Scholar
  56. Margalef, R., F. Muñoz & J. Herrera, 1957. Fitoplancton de las costas de Castellón de enero de 1955 a junio de 1956. Inv. Pesq. 7: 3-31.Google Scholar
  57. Martin, J. H. & 43 others, 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371: 123-129.Google Scholar
  58. Michaels, A. F., A. H. Knap, R. L. Dow, K. Gundersen, R. J. Johnson, J. Sorensen, A. Close, G. A. Knauer, S. E. Lohrenz, V. A. Asper, M. Tuel & R. Bidigare, 1994. Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic Time-series Study site. Deep-Sea Res. I 41: 1013-1038.Google Scholar
  59. Mommaerts, J. P., G. Pichot, J. Ozer, Y. Adam & W. Bayens, 1984. Nitrogen cycling and budget in Belgian coastal waters: North Sea with and without river inputs. Rapp. P.-v. Réun. Cons. int. Expl. Mer 183: 57-68.Google Scholar
  60. Nathansohn, A., 1910a. Über die allgemeinen Produktionsbedingungen im Meere. Int. Rev. ges. Hydrobiol. 1: 37-72Google Scholar
  61. Nathansohn, A., 1910b. Tier-und Pflanzenleben des Meeres. Quelle & Meyer, Leipzig, 130 pp.Google Scholar
  62. Radach, G., 1980. Preliminary simulations of the phytoplankton and phosphate dynamics during FLEX '76 with a simple two-component model. ‘Meteor’ Forsch.-Ergebn., Reihe A, 22: 151-163.Google Scholar
  63. Riley, G. A., 1946. Factors controlling phytoplankton populations on Georges Bank. J. mar. Res. 6: 54-73.Google Scholar
  64. Rollwagen Bollens, G. C. & M. R. Landry, 2000. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). II. Mesozooplankton abundance, biomass, depth distribution and grazing. Mar. Ecol. Prog. Ser. 201: 43-56.Google Scholar
  65. Smetacek, V. & U. Passow, 1990. Spring bloom initiation and Sverdrup's critical-depth model. Limnol. Oceanogr. 35: 228-234.Google Scholar
  66. Steele, J. H., 1962. Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7: 137-150.Google Scholar
  67. Steemann Nielsen, E., 1935. The production of phytoplankton at the Faroe Islands, Iceland, East Greenland and in the waters around. Medd. Komm. Danmarks Fisk.-Havunders., Ser. Plankton 3 (1): 1-93.Google Scholar
  68. Steemann Nielsen, E., 1937. On the relation between the quantities of phytoplankton and zooplankton in the sea. J. Cons. 12: 147-154.Google Scholar
  69. Steemann Nielsen, E., 1951. Measurement of the production of organic matter in the sea by means of carbon-14. Nature 167: 684-685.Google Scholar
  70. Steemann Nielsen, E., 1952. The use of radio-active carbon (C14) for measuring organic production in the sea. J. Cons. 18: 117-140Google Scholar
  71. Steemann Nielsen, E., 1957. The general background of oceanic productivity. In Steemann Nielsen, E. & E. A. Jensen (eds), Primary Oceanic Production. The Autotrophic Production of Organic Matter in the Oceans. Galathea Rept. 1: 91-120.Google Scholar
  72. Steemann Nielsen, E., 1958. The balance between phytoplankton and zooplankton in the sea. J. Cons. 23: 178-188.Google Scholar
  73. Steeman Nielsen, E., 1962. The relationship between phytoplankton and zooplankton in the sea. Rapp. P.-v. Réun. Cons. int. Expl. Mer 153: 178-182.Google Scholar
  74. Steemann Nielsen, E., 1963. Productivity, definitions and measurement. In Hill, M. N. (ed.), The Sea, Vol. 2. Interscience Publ., New York: 129-164.Google Scholar
  75. Steemann Nielsen, E., 1975. Marine Photosynthesis with Special Emphasis on the Ecological Aspects. Elsevier, Amsterdam: 141 pp.Google Scholar
  76. Steemann Nielsen, E. & D. H. Cushing, 1958. Introduction. Rapp. P.-v. Réun. Cons. int. Expl. Mer 144: 5-9.Google Scholar
  77. Strom, S. L., M. A. Brainard, J. L. Holmes & M. B. Olson, 2001. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters. Mar. Biol. 138: 355-368.Google Scholar
  78. Strom, S. L., C. B. Miller & B. W. Frost, 2000. What sets lower limits to phytoplankton stocks in high-nitrate, low-chlorophyll regions of the open ocean? Mar. Ecol. Prog. Ser. 193: 19-31.Google Scholar
  79. Sverdrup, H. U., M. W. Johnson & R. H. Fleming, 1942. The Oceans, their Physics, Chemistry, and General Biology. Prentice-Hall, Englewood Cliffs, NJ: 1087 pp.Google Scholar
  80. Watson, A. J., C. S. Law, K. Vanscoy, F. J. Millero, W. Yao, G. E. Friederich, M. I. Liddicoat, R. H. Wanninkhof, R. T. Barber & K. H. Coale, 1994. Minimal effect of iron fertilization on seasurface carbon dioxide concentrations. Nature 371: 143-145.Google Scholar
  81. Weichart, G., 1980. Chemical changes and primary production in the Fladen Ground area (North Sea) during the first phase of a spring phytoplankton bloom. ‘Meteor’ Forsch.-Ergebn., Reihe A, 22: 79-86.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Karl Banse
    • 1
  1. 1.School of OceanographyUniversity of WashingtonSeattleU.S.A.

Personalised recommendations