Journal of Optimization Theory and Applications

, Volume 115, Issue 3, pp 603–628 | Cite as

Biomimicry of Social Foraging Bacteria for Distributed Optimization: Models, Principles, and Emergent Behaviors

  • Y. Liu
  • K.M. Passino
Article

Abstract

In this paper, we explain the social foraging behavior of E. coli and M. xanthus bacteria and develop simulation models based on the principles of foraging theory that view foraging as optimization. This provides us with novel models of their foraging behavior and with new methods for distributed nongradient optimization. Moreover, we show that the models of both species of bacteria exhibit the property identified by Grunbaum that postulates that their foraging is social in order to be able to climb noisy gradients in nutrients. This provides a connection between evolutionary forces in social foraging and distributed nongradient optimization algorithm design for global optimization over noisy surfaces.

Distributed optimization biomimicry bacteria models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    STEPHENS, D. W., and KREBS, J. R., Foraging Theory, Princeton University Press, Princeton, New Jersey, 1986.Google Scholar
  2. 2.
    ALCOCK, J., Animal Behavior: An Evolutionary Approach, Sinauer Associates, Sunderland, Massachusetts, 1998.Google Scholar
  3. 3.
    BELL, W. J., Searching Behavior: The Behavioral Ecology of Finding Resources, Chapman and Hall, London, England, 1991.Google Scholar
  4. 4.
    GRUNBAUM, D., Schooling as a Strategy for Taxis in a Noisy Environment, Evolutionary Ecology, Vol. 12, pp. 503–522, 1998.Google Scholar
  5. 5.
    BONABEAU, E., DORIGO, M., and THERAULAZ, G., Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, New York, NY, 1999.Google Scholar
  6. 6.
    ADAMI, C., Introduction to Artificial Life, Springer Verlag, New York, NY, 1998.Google Scholar
  7. 7.
    RESNICK, M., Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds, MIT Press, Cambridge, Massachusetts, 1994.Google Scholar
  8. 8.
    LEVY, S., Artificial Life: A Report from the Frontier where Computers Meet Biology, Vintage Books, New York, NY, 1992.Google Scholar
  9. 9.
    ARIN, S., DENEUBOURG, J. L., GOSS, S., and PASTEELS, J. M., Functional Self-Organization Illustrated by Interest Traffic in Ants: The Case of the Argentine Ant, Biological Motion, Lecture Notes in Biomathematics, Edited by W. Alt and G. Hoffmann, Springer Verlag, Berlin, Germany, Vol. 89, pp. 533–547, 1990.Google Scholar
  10. 10.
    PARRISH, J. K., and HAMNER, W. M., Editors, Animal Groups in Three Dimensions, Cambridge University Press, Cambridge, England, 1997.Google Scholar
  11. 11.
    CAMAZINE, S., et al., Self-Organization in Biological Systems, Princeton University Press, Princeton, New Jersey, 2001.Google Scholar
  12. 12.
    PASSINO, K. M., Biomimicry of Bacterial Foraging for Distributed Optimization and Control, IEEE Control Systems Magazine, 2002 (to appear).Google Scholar
  13. 13.
    STEVENS, A., Simulations of the Gliding Behavior and Aggregation of Myxobacteria, Biological Motion, Lecture Notes in Biomathematics, Edited by W. Alt and G. Hoffmann, Springer Verlag, Berlin, Germany, Vol. 89, pp. 548–555, 1990.Google Scholar
  14. 14.
    STEVENS, A., A Stochastic Cellular Automaton, Modeling Gliding and Aggregation of Myxobacteria, SIAM Journal on Applied Mathematics, Vol. 61, pp. 172–182, 2000.Google Scholar
  15. 15.
    MADIGAN, M. T., MARTINKO, J. M., and PARKER, J., Biology of Microorganisms, 8th Edition, Prentice Hall, Upper Saddle River, New Jersey, 1997.Google Scholar
  16. 16.
    NEIDHARDT, F. C., INGRAHAM, J. L., and SCHAECHTER, M., Physiology of the Bacterial Cell: A Molecular Approach, Sinauer Associates, Sunderland, Massachusetts, 1990.Google Scholar
  17. 17.
    ALBERTS, B., BRAY, D., LEWIS, J., RAFF, M., ROBERTS, K., and WATSON, J. D., Molecular Biology of the Cell, 2nd Edition, Garland Publishing, New York, NY, 1989.Google Scholar
  18. 18.
    BERG, H. C., and BROWN, D. A., Chemotaxis in Escherichia coli Analyzed by Three-Dimensional Tracking, Nature, Vol. 239, pp. 500–504, 1972.Google Scholar
  19. 19.
    BERG, H. C., Motile Behavior of Bacteria, Physics Today, Vol. 53, pp. 24–29, 2000.Google Scholar
  20. 20.
    SEGALL, J. E., BLOCK, S. M., and BERG, H. C., Temporal Comparisons in Bacterial Chemotaxis, Proceedings of the National Academy of Sciences, Vol. 83, pp. 8987–8991, 1986.Google Scholar
  21. 21.
    BERG, H. C., Random Walks in Biology, New Expanded Edition, Princeton University Press, Princeton, New Jersey, 1993.Google Scholar
  22. 22.
    BUDRENE, E. O., and BERG, H. C., Dynamics of Formation of Symmetrical Patterns by Chemotactic Bacteria, Nature, Vol. 376, pp. 49–53, 1995.Google Scholar
  23. 23.
    BLAT, Y., and EISENBACH, M., Tar-Dependent and-Independent Pattern Formation by Salmonella Typhimurium, Journal of Bacteriology, Vol. 177, pp. 1683–1691, 1995.Google Scholar
  24. 24.
    BUDRENE, E. O., and BERG, H. C., Complex Patterns Formed by Motile Cells of Escherichia coli, Nature, Vol. 349, pp. 630–633, 1991.Google Scholar
  25. 25.
    WOODWARD, D. E., TYSON, R., MYERSCOUGH, M. R., MURRAY, J. D., BUDRENE, E. O., and BERG, H. C., Spatio-Temporal Patterns Generated by Salmonella Typhimurium, Biophysical Journal, Vol. 68, pp. 2181–2189, 1995.Google Scholar
  26. 26.
    ARMITAGE, J. P., Bacterial Tactic Responses, Advances in Microbial Physiology, Vol. 41, pp. 229–290, 1999.Google Scholar
  27. 27.
    SHAPIRO, J. A., Multicellularity: The Rule, Not the Exception, Bacteria as Multicellular Organisms, Edited by J. A. Shapiro and M. Dworkin, Oxford University Press, New York, NY, pp. 14–49, 1997.Google Scholar
  28. 28.
    LOSICK, R., and KAISER, D., Why and How Bacteria Communicate, Scientific American, Vol. 276, pp. 68–73, 1997.Google Scholar
  29. 29.
    SHIMKETS, L. J., and DWORKIN, M., Myxobacterial Multicellularity, Bacteria as Multicellular Organisms, Edited by J. A. Shapiro and M. Dworkin, Oxford University Press, New York, NY, pp. 220–244, 1997.Google Scholar
  30. 30.
    REICHENBACH, H., Biology of the Myxobacteria: Ecology and Taxonomy, Myxobacteria II, Edited by M. Dworkin and D. Kaiser, American Society for Microbiology, Washington, DC, pp. 13–62, 1993.Google Scholar
  31. 31.
    KOCH, A. and WHITE, D., The Social Lifestyle of Myxobacteria, BioEssays, Vol. 20, pp. 1030–1038, 1998.Google Scholar
  32. 32.
    KOCH, A. L., The Strategy of Myxococcus xanthus for Group Cooperative Behavior, Antonie van Leeuwenhoek, Vol. 73, pp. 299–313, 1998.Google Scholar
  33. 33.
    NAWA, N. E., and FURUHASHI, T., Fuzzy System Parameters Discovery by Bacterial Evolutionary Algorithm, IEEE Transactions on Fuzzy Systems, Vol. 5, pp. 608–616, 1999.Google Scholar
  34. 34.
    BERTSEKAS, D. P., Nonlinear Programming, Athena Scientific Press, Belmont, Massachusetts, 1995.Google Scholar
  35. 35.
    LUENBERGER, D. G., Linear and Nonlinear Programming, Addison-Wesley, Reading, Massachusetts, 1984.Google Scholar
  36. 36.
    MCBRIDE, M. J., HARTZELL, P., and ZUSMAN, D. R., Motility and Tactic Behavior of Myxococcus xanthus, Myxobacteria II, Edited by M. Dworkin and D. Kaiser, American Society for Microbiology, Washington, DC, pp. 285–305, 1993.Google Scholar
  37. 37.
    SHAPIRO, J. A., Bacteria as Multicellular Organisms, Scientific American, Vol. 258, pp. 62–69, 1988.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Y. Liu
    • 1
  • K.M. Passino
    • 2
  1. 1.Department of Electrical EngineeringOhio State UniversityColumbus
  2. 2.Department of Electrical EngineeringOhio State UniversityColumbus

Personalised recommendations