Genetica

, Volume 116, Issue 2–3, pp 179–188 | Cite as

The Evolution of Hybrid Infertility: Perpetual Coevolution between Gender-Specific and Sexually Antagonistic Genes

  • William R. Rice
  • Adam K. Chippindale
Article

Abstract

A new hypothesis is proposed for the rapid evolution of postzygotic reproductive isolation via hybrid infertility. The hypothesis is motivated by two lines of experimental research from Drosophila melanogaster that demonstrate that sexually antagonistic fitness variation is abundant and that epistatic fitness variation on the Y chromosome is common. The hypothesis states that the expression of sexually antagonistic genes leads to a ‘gender-load’ in each sex. In response, gender-limited reproductive genes are selected to ameliorate, through pleiotropy, the expression of sexually antagonistic genes. Chronic coevolution between gender-limited genes and gender-unlimited sexually antagonistic genes causes rapid divergence of reproductive proteins among allopatric populations, ultimately leading to hybrid infertility.

genomic conflict hybrid infertility sex-specific genes sexual antagonism speciation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvesalo, L., 1997. Sex chromosomes and human growth-a dental approach. Hum. Genet. 101: 1–5.Google Scholar
  2. Arnqvist, G. & L. Rowe, 1995. Sexual conflict and arms races between the sexes-a morphological adaptation for control of mating in a female insect. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 261: 123–127.Google Scholar
  3. Bull, J.J., 1983. Evolution of Sex Determination Systems. Benjamin Cummings, Menlo Park, California.Google Scholar
  4. Chapman, T., F. Lindsay, F. Liddle, J.M. Kalb, M.F. Wolfner & L. Partridge, 1995. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373: 241–244.Google Scholar
  5. Chen, P.S., 1996. The accessory gland proteins in male Drosophila: structural, reproductive, and evolutionary aspects. Experientia 52: 503–510.Google Scholar
  6. Chippindale, A.K., J.R. Gibson & W.R. Rice, 2001. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl. Acad. Sci. USA 98: 1671–1675.Google Scholar
  7. Chippindale, A.K. & W.R. Rice, 2001. Y chromosome polymorphism is a strong determinant of male fitness in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98: 5677–5682.Google Scholar
  8. Civetta, A. & R.S. Singh, 1995. High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species. J. Mol. Evol. 41: 1085–1095.Google Scholar
  9. Clark, A.G., 1987. Variation in Y-chromosome segregation in natural-populations of Drosophila melanogaster. Genetics 115: 143–151.Google Scholar
  10. Clark, A.G. & E.M.S. Lyckegaard, 1990. 2 neutrality tests of Ylinked rDNA variation in Drosophila melanogaster. Evolution 44: 2106–2112.Google Scholar
  11. Eberhard, W.G., 1996. Female Control: Sexual Selection by Cryptic Female Choice. Princeton University Press, Princeton.Google Scholar
  12. Endler, J.A., 1980. Natural selection on color patterns in Poecilia reticulata. Evolution 34: 76–91.Google Scholar
  13. Forsman, A., 1995. Opposing fitness consequences of color pattern in male and female snakes. J. Evol. Biol. 8: 53–70.Google Scholar
  14. Haig, D., 1993. Genetic conflicts in human pregnancy. Quart. Rev. Biol. 68: 495–531.Google Scholar
  15. Haig, D. & C. Graham, 1991. Genomic imprinting and the strange case of the insulin-like growth factor-ii receptor. Cell 64: 1045–1046.Google Scholar
  16. Hurst, L.D., 1992. Intragenomic conflict as an evolutionary force. Proc. R. Soc. Lond. B 247: 189–194.Google Scholar
  17. Howard, D.J., M. Reece, P.G. Gregory, J. Chu & M.L. Caim, 1998. The evolution of barriers to fertilization between closely related organisms, pp. 279–290 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, Oxford.Google Scholar
  18. Jiang, M., J. Ryu, M. Kiraly, K. Duke, V. Reinke & S.K. Kim, 2001. Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 98: 218–223.Google Scholar
  19. Jin, W., R.M. Riley, R.D. Wolfinger, K.P. White, G. Passador-Gurgel & G. Gibson, 2001. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat. Genet. 29: 389–395.Google Scholar
  20. Kohorn, L.U., 1994. Shoot morphology and reproduction in jojoba: advantages of sexual reproduction. Ecology 75: 2384–2394.Google Scholar
  21. Lindsley, D.L.& E.H. Grell, 1968. Genetic Variations of Drosophila melanogaster. Carnegie Institute of Washington, Washington D.C.Google Scholar
  22. Maynard Smith, J., 1978. The Evolution of Sex. Cambridge University Press, New York.Google Scholar
  23. Meagher, T.R., 1992. The quantitative genetics of sexual dimorphism in Silene latifolia (Caryophyllaceae). 1. Genetic variation. Evolution 46: 445–457.Google Scholar
  24. Orgad, S.G., Rosenfeld, R.J. Greenspan & D. Segal, 2000. Courtless, the Drosophila UBC7 homolog, is involved in male courtship behavior and spermatogenesis. Genetics 155: 1267–1280.Google Scholar
  25. Ostrer, H., 2001. Genome and hormones: gender differences in physiology-invited review: sex-based differences in gene expression. J. Appl. Physiol. 91: 2384–2388.Google Scholar
  26. Palumbi, S.R., 1998. Speciation and the evolution of gamete recognition loci, pp. 271–278 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, Oxford.Google Scholar
  27. Parker, G.A., 1979. Sexual selection and sexual conflict, pp. 123–166 in Sexual Selection and Reproductive Competition in Insects, edited by M.S. Blum & N.A. Blum. Academic Press, New York.Google Scholar
  28. Parker, G.A. & L. Partridge, 1998. Sexual conflict and speciation. Phil. Trans. R. Soc. Lond. Ser.-B Biol. Sci. 353: 261–274.Google Scholar
  29. Partridge, L., K. Fowler, S. Trevitt & W. Sharp, 1986. An examination of the effects of males on the survival and egg-production rates of female Drosophila-melanogaster. J. Insect Physiol. 32: 925–929.Google Scholar
  30. Pitnick, S. & G.T. Miller, 2000. Correlated response in reproductive and life history traits to selection on testis length in Drosophila hydei. Heredity 84: 416–426.Google Scholar
  31. Rice, W.R., 1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38: 735–742.Google Scholar
  32. Rice, W.R., 1986. On the instability of polygenic sex determination: the effect of sex-specific selection. Evolution 40: 633–639.Google Scholar
  33. Rice, W.R., 1987. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution 41: 911–914.Google Scholar
  34. Rice, W.R., 1992. Sexually antagonistic genes: experimental evidence. Science 256: 1436–1439.Google Scholar
  35. Rice, W.R., 1996. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 361: 232–234.Google Scholar
  36. Rice, W.R., 1998a. Intergenomic conflict, interlocus antagonistic coevolution, and the evolution of reproductive isolation, pp. 261–270 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, Oxford.Google Scholar
  37. Rice, W.R., 1998b. Male fitness increases when females eliminated from gene pool: implications for the Y chromosome. Proc. Natl. Acad. Sci. USA 95: 6217–6221.Google Scholar
  38. Rice, W.R. & B. Holland, 1997. The enemies within: intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen. Behav. Ecol. Sociobiol. 41: 1–10.Google Scholar
  39. Rice, W.R. & A.K. Chippindale, 2001. Intersexual ontogenetic conflict. J. Evol. Biol. 14: 685–693.Google Scholar
  40. Rinchik, E.M., D.A. Carpenter & M.A. Handel, 1995. Pleiotropy in microdeletion syndromes-neurologic and spermatogenic abnormalities in mice homozygous for the P(6H) deletion are likely due to dysfunction of a single-gene. Proc. Natl. Acad. Sci. USA 92: 6394–6398.Google Scholar
  41. Roldan, E.R.S. & M. Gomendio, 1999. The Y chromosome as a battleground for sexual selection. Trends Ecol. Evol. 14: 58–62.Google Scholar
  42. Sasaki, A. & G. de Jong, 1999. Density dependence and unpredictable selection in a heterogeneous environment: compromise and polymorphism in the ESS reaction norm Evolution 53: 1329–1342.Google Scholar
  43. Schoener, T.W., J.B. Slade & C.H. Stinson, 1982. Diet and sexual dimorphism in the very catholic lizard genus, Leiocephalus of the Bahamas. Oecologia 53: 160–169.Google Scholar
  44. Sherman, P.W., 1977. Nepotism and evolution of alarm calls. Science 197: 1246–1253.Google Scholar
  45. Singh, R.S. & R.J. Kulathinal, 2000. Sex gene pool evolution and speciation: a new paradigm Genes. Genet. Syst. 75: 119–130.Google Scholar
  46. Slatkin, M. & J. Maynard Smith, 1979. Models of coevolution. Quart. Rev. Biol. 54: 233–263.Google Scholar
  47. Stenseth, N.C. & J. Maynard Smith, 1984. Coevolution in ecosystems-red queen evolution or stasis. Evolution 38: 870–880.Google Scholar
  48. Swanson, W.J., A.G. Clark, H.M. Waldrip-Dail, M.F. Wolfner & C.F. Aquadro, 2001. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc. Natl. Acad. Sci. USA 98: 7375–7379.Google Scholar
  49. Toro, M.A. & B. Charlesworth, 1982. An attempt to detect geneticvariation in sex-ratio in Drosophila melanogaster. Heredity 49: 199–209.Google Scholar
  50. Trivers, R.L., 1974. Parent-offspring conflict. Am. Zool. 14: 249–264.Google Scholar
  51. True, J.R., B.S. Weir & C.V.C. Laurie, 1996. A genome-wide survey of hybrid incompatibility factors by the introgression of marked segments of Drosophila mauritiana chromosomes into Drosophila simulans. Genetics 142: 819–837.Google Scholar
  52. Vacquier, V.D., 1998. Evolution of gamete recognition proteins. Science 28: 1995–1998.Google Scholar
  53. Van Valen, L., 1973. A new evolutionary law. Evol. Theory 1: 1–30.Google Scholar
  54. West-Eberhard, M., 1983. Sexual selection, social competition and speciation. Quart. Rev. Biol. 58: 155–183.Google Scholar
  55. Wolfner, M.F., 1997. Tokens of love: functions and regulation of Drosophila male accessory gland products Insect. Biochem. Mol. 27: 179–192.Google Scholar
  56. Wu, C.-I. & A.W. Davis, 1993. Evolution of postmating reproductive isolation-the composite nature of Haldane rule and its genetic bases. Am. Nat. 142: 187–212.Google Scholar
  57. Wu, C.-I. & M.F. Palopoli, 1994. Genetics of postmating reproductive isolation in animals. Ann. Rev. Genet. 28: 283–308.Google Scholar
  58. Wyckoff, G.J., W. Wang & C.-I. Wu, 2000. Rapid evolution of male reproductive genes in the descent of man. Nature 403: 304–309.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • William R. Rice
    • 1
  • Adam K. Chippindale
    • 2
  1. 1.Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraUSA (Phone
  2. 2.Department of BiologyQueen's UniversityKingstonCanada

Personalised recommendations