Journal of Quantitative Criminology

, Volume 18, Issue 4, pp 319–347 | Cite as

Analyzing Multiple-Item Measures of Crime and Deviance II: Tobit Regression Analysis of Transformed Scores

  • D. Wayne Osgood
  • Laura L. Finken
  • Barbara J. McMorris


The purpose of this article is to inform criminological researchers about tobit regression, an alternative regression model that deserves more attention in this field. Tobit regression is intended for continuous data that are censored, or bounded at a limiting value. The tobit model may be a particularly good match to measures of self-reported offending, provided they have been transformed to reduce skewness. We present empirical analyses that evaluate the match of self-report measures to the assumptions of ordinary least square (OLS) and tobit regression models and that assess the consequences of any violations of assumptions. The analyses use a fourteen-item, self-report measure of delinquency from the Monitoring the Future study, a national survey of high school seniors. These analyses provide clear evidence that (1) transformations to reduce skewness improve the match of OLS to the data but still leave considerable discrepancies, and (2) the tobit model is well suited to the transformed measure. We conclude by assessing the purposes for which tobit offers greater and smaller advantages over OLS regression.

tobit regression self-report measures regression analysis limited dependent variables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albonetti, C. A. (1997). Sentencing under the federal sentencing guidelines: Effects of defendant characteristics, guilty pleas, and departures on sentence outcomes for drug offenses, 1991-1992. Law Soc. Rev. 31: 789-824.Google Scholar
  2. Bohrnstedt, G. W., and Carter, T. M. (1971). Robustness in regression analysis. In Costner, H. (ed.), Sociological Methodology. San Francisco: Jossey-Bass.Google Scholar
  3. Breen, R. (1996). Regression Models: Censored, Sample-Selected, or Truncated Data. Sage University Paper series on Quantitative Applications in the Social Sciences, series no. 97-011. Thousand Oaks, CA: Sage.Google Scholar
  4. Gottfredson, M., and Hirschi, T. (1990). A General Theory of Crime. Stanford, CA: Stanford University Press.Google Scholar
  5. Greene, W. H. (1995). LIMDEP: Version 7.0 Users Manual. Plainview, NY: Econometric Software Inc.Google Scholar
  6. Hambleton, R. K., and Swaminathan, H. (1985). Item Response Theory: Principles and Applications. Boston: Kluwer-Nijhoff.Google Scholar
  7. Hindelang, M. J., Hirschi, T., and Weis, J. G. (1981). Measuring Delinquency. Beverly Hills, CA: Sage.Google Scholar
  8. Huizinga, D., and Elliott, D. S. (1986). Reassessing the reliability and validity of self-report delinquency measures. J. Quant. Criminol. 2: 293-327.Google Scholar
  9. Judd, C. M., and McClelland, G. H. (1989). Data Analysis: A Model-Comparison Approach. San Diego, CA: Harcourt Brace Jovanovich.Google Scholar
  10. Johnson, D. R., and Creech, J. C. (1983). Ordinal measures in multiple indicator models: A simulation study of categorization error. Am. Sociol. Rev. 48: 398-407.Google Scholar
  11. Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate Distributions, vol. 1. (2nd ed.). New York: Houghton Mifflin.Google Scholar
  12. King, G. (1988). Statistical models for political science events counts: Bias in conventional procedures and evidence for the exponential Poisson model. Am. J. Pol. Sci. 32: 838-863.Google Scholar
  13. Land, K. C., McCall, P. L., and Nagin, D. S. (1996). A comparison of Poisson, negative binomial, and semiparametric mixed Poisson regression models: With empirical applications to criminal careers data. Sociol. Methods Res. 24: 387-442.Google Scholar
  14. Loftin, C., and McDowall, D. (1981). One with a gun gets you two: Mandatory Sentencing and Firearms Violence in Detroit. Ann. Am. Acad. Pol. Soc. Sci. 455: 150-167.Google Scholar
  15. Long, J. S. (1997). Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, CA: Sage.Google Scholar
  16. McClendon, M. J. (1994). Multiple Regression and Causal Analysis. Itasca, IL: F. E. Peacock Publishers, Inc.Google Scholar
  17. Nagin, D. S., and Smith, D. A. (1990). Participation in and frequency of delinquent behavior: A test for structural differences. J. Quant. Criminol. 6: 335-356.Google Scholar
  18. Osgood, D. W. (2000). Poisson-based regression analysis of aggregate crime rates. J Quant. Criminol. 16: 21-43.Google Scholar
  19. Osgood, D. W., McMorris, B. J., and Potenza, M. T. (2002). Analyzing multiple-item measures of crime and deviance I: Item response theory scaling. J. Quant. Criminol. 18: 267-296.Google Scholar
  20. Osgood, D. W., and Rowe, D. C. (1994). Bridging criminal careers, theory, and policy through latent variable models of individual offending. Criminology 32: 517-554.Google Scholar
  21. Osgood, D. W., Wilson, J. K., O'Malley, P. M., Bachman, J. G., and Johnston, L. D. (1996). Routine activities and individual deviant behavior. Am. Sociol. Rev. 61: 635-655.Google Scholar
  22. Paternoster, R., and Triplett, R. (1988). Disaggregating self-reported delinquency and its implications for theory. Criminology 26: 591-625.Google Scholar
  23. Rhodes, W. (1991). Federal criminal sentencing: Some measurement issues with application to pre-guideline sentencing disparity. J. Crim. Law Criminol. 81: 1002-1033.Google Scholar
  24. Rowe, D. C., Osgood, D. W., and Nicewander, W. A. (1990). A latent trait approach to unifying criminal careers. Criminology 28: 237-270.Google Scholar
  25. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, No. 17.Google Scholar
  26. Schmidt, P., and Witte, A. D. (1988). Predicting Recidivism Using Survival Models. New York: Springer-Verlag.Google Scholar
  27. Short, J. F., Jr., and Nye, F. I. (1957). Reported behavior as a criterion of deviant behavior. Soc. Probl. 5: 207-213.Google Scholar
  28. Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica 26: 24-36.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • D. Wayne Osgood
    • 1
  • Laura L. Finken
    • 2
  • Barbara J. McMorris
    • 3
  1. 1.Crime, Law, and Justice ProgramPennsylvania State UniversityUniversity Park
  2. 2.Department of PsychologyCreighton UniversityOmaha
  3. 3.Social Development Research GroupUniversity of WashingtonSeattle

Personalised recommendations