Flow, Turbulence and Combustion

, Volume 68, Issue 3, pp 227–268 | Cite as

Direct Numerical Simulation of the Interaction between a Shock Wave and Various Types of Isotropic Turbulence

  • S. Jamme
  • J.-B. Cazalbou
  • F. Torres
  • P. Chassaing
Article

Abstract

Direct Numerical Simulation (DNS) is used to study the interaction between normal shock waves of moderate strength (M1= 1.2 and M1 = 1.5) and isotropic turbulence. A complete description of the turbulence behaviour across the shock is provided and the influence of the nature of the incoming turbulence on the interaction is investigated. The presence of upstream entropy fluctuations satisfying the Strong Reynolds Analogy enhances the amplification of the turbulent kinetic energy and transverse vorticity variances across the shock compared to the solenoidal (pure vorticity) case. Budgets for the fluctuating-vorticity variances are computed, showing that the baroclinic torque is responsible for this additional production of transverse vorticity. More reduction of the transverse Taylor microscale and integral scale is also observed in the vorticity-entropy case while no influence can beseen on the longitudinal Taylor microscale. When the upstream turbulence is dominated by acoustic and vortical fluctuations, less amplification of the kinetic energy (for Mach numbers between 1.25 and 1.8), less reduction of the transverse microscale and more amplification of the transverse vorticity variance are observed through the shock compared to the solenoidal case. In all cases, the classic estimation of Batchelor relating the dissipation rate and the integral scale of the flow proves to be invalid. These results are obtained with the same numerical tool and similar flow parameters, and they are in good agreement with Linear Interaction Analysis (LIA).

DNS shock/turbulence interaction compressible turbulence linear analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barre, S., Alem, D. and Bonnet, J.-P., Experimental study of a normal shock/homogeneous turbulence interaction. AIAA J. 34 (1996) 968-974.ADSGoogle Scholar
  2. 2.
    Batchelor, G.K., The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge (1953).MATHGoogle Scholar
  3. 3.
    Briassulis, G. and Andreopoulos, J., High resolution measurements of isotropic turbulence interacting with shock waves. AIAA Paper 96-0042 (1996).Google Scholar
  4. 4.
    Debiève, J.-F. and Lacharme, J.-P., A shock wave/free turbulence interaction. In: Delery, J. (ed.), Turbulent Shear Layer/Shock Wave Interactions. Springer-Verlag, Berlin (1985) pp. 393-403.Google Scholar
  5. 5.
    Dubois, T., Domaradzki, J.A. and Honein, A., The subgrid-scale estimation model applied to large eddy simulations of compressible turbulence. Phys. Fluids A 14(5) (2002) 1781-1801.CrossRefADSGoogle Scholar
  6. 6.
    Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu C. and Poinsot, T., Large eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (1999) 517-549.MATHCrossRefADSGoogle Scholar
  7. 7.
    Erlebacher, G., Hussaini, M.Y., Kreiss, H.O. and Sarkar, S., The analysis and simulation of compressible turbulence. Theor. Comput. Fluid Dynam. 2 (1990) 73-95.MATHADSGoogle Scholar
  8. 8.
    Fabre, D., Jacquin, L., Garnier, E. and Sagaut, P., Linear interaction analysis: The effect of a shock wave on a homogeneous perturbation field and on an entropy spot. In: Turbulence in High Speed Compressible Flows, Euromech 403, </del> Poitiers (1999).Google Scholar
  9. 9.
    Fabre, D., Jacquin, L. and Sesterhenn, J., Linear interaction of a cylindrical entropy spot with a shock. Phys. Fluids A 13(8) (2001) 2403-2422.CrossRefADSGoogle Scholar
  10. 10.
    Garnier, E., Sagaut, P. and Deville, M., A class of explicit ENO filters with application to unsteady flows. J. Comput. Phys. 170(1) (2001) 184-204.MATHCrossRefADSGoogle Scholar
  11. 11.
    Garnier, E., Sagaut, P. and Deville, M., Large eddy simulation of shock/homogeneous turbulence interaction. Comput. & Fluids 31(2) (2002) 245-268.CrossRefGoogle Scholar
  12. 12.
    Hanjalić, K. and Launder, B.E., Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence. J. Fluid Mech. 4 (1976) 593-610.CrossRefADSGoogle Scholar
  13. 13.
    Hannappel, R. and Friedrich, R., Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence. Appl. Sci. Res. 54 (1995) 205-221.MATHCrossRefADSGoogle Scholar
  14. 14.
    Hinze, J., Turbulence. MacGraw-Hill, New York (1975).Google Scholar
  15. 15.
    Honkan, A. and Andreopoulos, J., Experiments in a shock wave/homogeneous turbulence interaction. AIAA Paper 90-1647 (1990).Google Scholar
  16. 16.
    Honkan, A. and Andreopoulos, J., Rapid compression of grid-generated turbulence by amoving shock wave. Phys. Fluids A Schumann, U. and Whitelaw, J.H. (eds), Proceedings of the Eighth Symposium on Turbulent Shear Flows, Springer-Verlag, Berlin (1991) pp. 1-6.Google Scholar
  17. 19.
    Jacquin, L., Cambon C. and Blin, E., Turbulence amplification by a shock wave and rapid distortion theory. Phys. Fluids A 5(10) (1993) 2539-2550.MATHCrossRefADSGoogle Scholar
  18. 20.
    Jacquin, L. and Geffroy, P., Amplification and reduction of turbulence in a heated jet/shock interaction. In: Durst, F., Launder, B.E., Schmidt, F.W. and Whitelaw, J.H. (eds), Proceedings of the Eleventh Symposium on Turbulent Shear Flows. Springer-Verlag, Berlin (1997) pp. L12-L17.Google Scholar
  19. 21.
    Jamme, S., Étude de l'interaction entre une turbulence homogène isotrope et une onde de choc. Ph.D. Thesis, Institut National Polytechnique de Toulouse (1998).Google Scholar
  20. 22.
    Keller, J. and Merzkirch, W., Interaction of a normal shock wave with a compressible turbulent flow. Exp. Fluids 8 (1990) 241-248.CrossRefGoogle Scholar
  21. 23.
    Kovasznay, L.S.G., Turbulence in supersonic flow. J. Aero. Sci. 20 (1953) 657-682.MATHGoogle Scholar
  22. 24.
    Launder, B.E. and Sharma, B.I., Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transfer 1 (1974) 131-138.CrossRefADSGoogle Scholar
  23. 25.
    Lee, S., Lele, S.K. and Moin, P., Interaction of isotropic turbulence with a shock wave. Report TF-52, Thermosciences Division, Mechanical Engineering Department, Stanford University (1992).Google Scholar
  24. 26.
    Lee, S., Lele, S.K. and Moin, P., Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow. Phys. Fluids A 4 (1992) 1521-1530.MATHCrossRefADSGoogle Scholar
  25. 27.
    Lee, S., Lele, S.K. and Moin, P., Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251 (1993) 533-562.CrossRefADSGoogle Scholar
  26. 28.
    Lee, S., Lele, S.K. and Moin, P., Interaction of isotropic turbulence with shock waves: Effect of shock strength. J. Fluid Mech. 340 (1997) 225-247.MATHMathSciNetCrossRefADSGoogle Scholar
  27. 29.
    MacCormack, R.W., The effect of viscosity on hypervelocity impact cratering. AIAA Paper 69-354 (1969).Google Scholar
  28. 30.
    Mahesh, K., Lee, S., Lele, S.K. and Moin, P., The interaction of an isotropic field of acoustic waves with a shock wave. J. Fluid Mech. 300 (1995) 383-407.MATHMathSciNetCrossRefADSGoogle Scholar
  29. 31.
    Mahesh, K., Moin, P. and Lele, S.K., The interaction of a shock wave with a turbulent shear flow. Report TF-69, Thermosciences Division, Mechanical Engineering Department, Stanford University (1996).Google Scholar
  30. 32.
    Mahesh, K., Lele, S.K. and Moin, P., The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334 (1997) 353-379.MATHMathSciNetCrossRefADSGoogle Scholar
  31. 33.
    Moore, F.K., Unsteady oblique interaction of a shock wave with a plane disturbance. NACA TN 2879 (1953).Google Scholar
  32. 34.
    Orszag, S.A. and Patterson, G.S., Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28 (1972) 76-79.CrossRefADSGoogle Scholar
  33. 35.
    Ribner, H.S., Convection of a pattern of vorticity through a shock wave. NACA TN 2864 (1953).Google Scholar
  34. 36.
    Ribner, H.S., Shock/turbulence interaction and the generation of noise. NACA TN 3255 (1954).Google Scholar
  35. 37.
    Ribner, H.S., Spectra of noise and amplified turbulence emanating from shock/turbulence interaction. AIAA J. 35 (1987) 436-442.ADSCrossRefGoogle Scholar
  36. 38.
    Rotman, D., Shock wave effects on a turbulent flow. Phys. Fluids A 3 (1991) 1792-1806.MATHCrossRefADSGoogle Scholar
  37. 39.
    Tavouralis, S., Bennet, J.C. and Corrsin, S., Velocity derivative skewness in small Reynolds number, nearly isotropic turbulence. J. Fluid Mech. 176 (1978) 63-69.ADSGoogle Scholar
  38. 40.
    Thompson, K.W., Time dependent boundary conditions for hyperbolic systems I. J. Comput. Phys. 68 (1987) 1-24.MATHMathSciNetCrossRefADSGoogle Scholar
  39. 41.
    Thompson, K.W., Time dependent boundary conditions for hyperbolic systems II. J. Comput. Phys. 89 (1990) 439-461.MATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • S. Jamme
    • 1
  • J.-B. Cazalbou
    • 1
  • F. Torres
    • 1
  • P. Chassaing
    • 1
  1. 1.Fluid Mechanics DepartmentENSICAToulouse Cedex 5France

Personalised recommendations