Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 84, Issue 4, pp 355–368 | Cite as

Symplectic Mappings of Co-orbital Motion in the Restricted Problem of Three Bodies

  • Zsolt Sándor
  • Bálint Érdi
  • Carl D. Murray
Article

Abstract

The dynamics of co-orbital motion in the restricted three-body problem are investigated by symplectic mappings. Analytical and semi-numerical mappings have been developed and studied in detail. The mappings have been tested by numerical integration of the equations of motion. These mappings have been proved to be useful for a quick determination of the phase space structure reflecting the main characteristics of the dynamics of the co-orbital problem.

symplectic mappings 1:1 resonance co-orbital dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, E. W. and Shook, C. A.: 1964, Planetary Theory, Dover Publications, New York.Google Scholar
  2. Christou, A. A.: 2000, 'A numerical survey of transient co-orbitals of the terrestrial planets', Icarus 144, 1uu20.Google Scholar
  3. Ferraz-Mello, S.: 1996, 'A symplectic mapping approach to the study of the stochasticity in asteroidal resonances', Celest. Mech. & Dyn. Astr. 65, 421uu437.Google Scholar
  4. Hadjidemetriou, J. D.: 1991, 'Mapping models for Hamiltonian systems with application to resonant asteroid motion', In: A. E. Roy (ed.), Predictability, Stability, and Chaos in N-Body Dynamical Systems, Plenum Press, New York, pp. 157uu175.Google Scholar
  5. Hadjidemetriou, J. D.: 1993, 'Asteroid motion near the 3:1 resonance', Celest. Mech. & Dyn. Astr. 56, 563uu599.Google Scholar
  6. Hadjidemetriou, J. D.: 1999, 'A symplectic mapping model as a tool to understand the dynamics of 2/1 resonant asteroid motion', Celest. Mech. & Dyn. Astr. 73, 65uu76.Google Scholar
  7. Hadjidemetriou, J. D. and Lemaître, A.: 1997, 'Asteroid motion near the 2:1 resonance. A symplectic mapping approach', In: R. Dvorak and J. Henrard (eds), The Dynamical Behaviour of Our Planetary System, Kluwer Academic Publishers, pp. 277uu290.Google Scholar
  8. Murray, C. D. and Dermott, S. F.: 1999, Solar System Dynamics, Cambridge University Press, Cambridge.Google Scholar
  9. Namouni, F.: 1999, 'Secular interactions of coorbiting objects', Icarus 137, 293uu314.Google Scholar
  10. Namouni, F., Christou, A. A. and Murray, C. D.: 1999, 'Coorbital dynamics at large eccentricities and inclination', Phys. Rev. Lett. 83, 2506uu2509.Google Scholar
  11. Namuoni, F. and Murray, C. D.: 2000, 'The effect of eccentricity and inclination on the motion near the Lagrangian points L4 and L5', Celest. Mech. & Dyn. Astr. 76, 131uu138.Google Scholar
  12. Roig, F. and Feraz-Mello, S.: 1999, 'A symplectic mapping approach of the dynamics of the Hecuba gap', Planet. Space Sci. 47, 653uu664.Google Scholar
  13. Sándor, Zs. and Morais, M. H.: 2000, 'A mapping model for the coorbital problem', In: Proceedings of the USuuEuropean Celestial Mechanics Workshop, Poznan, Poland (in press).Google Scholar
  14. Sándor, Zs.: 2001a, 'A mapping model for the coorbital dynamics in the restricted three-body problem', In: F. Freistetter, R. Dvorak and B. Érdi (eds), Proceedings of the 2nd Austrian Hungarian Workshop on Trojans and Related Topics, Eötvös University Press, Budapest, pp. 115uu124.Google Scholar
  15. Sándor, Zs.: 2001b, 'Mapping representations of the coorbital dynamics', In: E. Forgács-Dajka and Zs. Sándor (eds), National Postgraduate Reunion in Astronomy and Astrophysics, Publ. Astron. Dept. Eötvös Univ. 11, 29uu34.Google Scholar
  16. Šidlichovský, M. and Melendo, B.: 1986, 'Mapping for 5/2 asteroidal commensurability', Bull. Astron. Inst. Czechos. 37, 65uu80.Google Scholar
  17. Šidlichovský, M.: 1992, 'Mapping for the asteroidal resonances', Astron. Astrophys. 259, 341uu348.Google Scholar
  18. Schubart, J.: 1964, 'Long-period effects in nearly commensurable cases of the restricted three-body problem', Smithson. Astrophys. Obs. Special Rep. 149.Google Scholar
  19. Wisdom, J.: 1982, 'The origin of the Kirkwood gaps: a mapping technique for asteroidal motion near the 3/1 commensurability', Astron. J. 87, 577uu593.Google Scholar
  20. Wisdom, J.: 1987, 'Urey Prize Lecture-Chaotic dynamics in the solar system', Icarus 72, 241uu275.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Zsolt Sándor
    • 1
  • Bálint Érdi
    • 1
  • Carl D. Murray
    • 2
  1. 1.Department of AstronomyEötvös UniversityBudapestHungary
  2. 2.Astronomy Unit, Queen MaryUniversity of LondonLondonU.K

Personalised recommendations