Advertisement

Journal of Materials Science

, Volume 38, Issue 1, pp 133–139 | Cite as

Low temperature crystallographic data on Kevlar 49 fibres

  • R. V. Iyer
  • K. Sooryanarayana
  • T. N. Guru Row
  • K. VijayanEmail author
Article

Abstract

Using X-ray diffraction data, the behaviour of Kevlar 49 fibres at low temperatures, up to −100°C, has been analysed. During cooling, the basal plane of the monoclinic unit cell shrinks whereas the c- (unique, chain axis) length is not significantly affected. In contrast, in the return heating cycle to ambient temperature, the basal plane expands and contraction occurs along the chain direction. The unit cell registers a reduction in volume in both the cooling and heating cycles. Conspicuously, after a cycle of cooling and heating, the unit cell does not return to its initial volume.

Keywords

Polymer Ambient Temperature Diffraction Data Crystallographic Data Basal Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Wilfong and J. Zimmerman, J. Appl. Polym. Symp. 31 (1977) 1.Google Scholar
  2. 2.
    A. M. Hindeleh and M. SH. Abdo, Polymer 30 (1989) 218.Google Scholar
  3. 3.
    H. V. Parimala and K. Vijayan, J. Mater Sci. Lett. 12 (1993) 99.Google Scholar
  4. 4.
    R. V. Iyer and K. Vijayan, in “Polymer Science Recent Advances,” Vol. 1, edited by I. S. Bhardwaj (Allied Publishers Ltd., New Delhi, 1994) p. 362.Google Scholar
  5. 5.
    Idem., in “Macromolecules NewFrontiers,”Vol. 2, edited by K. S.V. Srinivasan (Allied Publishers Ltd, New Delhi, 1998 p. 847.Google Scholar
  6. 6.
    Idem., Curr. Sci. 75 (1998) 946.Google Scholar
  7. 7.
    Idem., J. Mater Sci. 35 (2000) 573.Google Scholar
  8. 8.
    Idem., Bull. Mater. Sci. 22 (1999) 1013.Google Scholar
  9. 9.
    K. Vijayan, Metals, Materials and Processes 12 (2000) 259.Google Scholar
  10. 10.
    M. Shubha, M. Phil. Dissertation, Mangalore University, India (1989).Google Scholar
  11. 11.
    H. V.Parimala, M. Phil. Disseration, Mangalore University, India (1991).Google Scholar
  12. 12.
    R. V. Iyer, Ph. D. Thesis, Bangalore University, India (1999).Google Scholar
  13. 13.
    H. H. Yang, in “Kevlar Araamid Fibre” (John Wiley & Sons, Chichester, 1993).Google Scholar
  14. 14.
    C. L. Jackson, R. J. Schad, K. H. Gardner, D. B. Chase, S. R. Allen, V. Gabara and A. D. English, Polymer 35 (1994) 1123.Google Scholar
  15. 15.
    D. J. Schaefer and A. D. English, ibid 36 (1995) 2517.Google Scholar
  16. 16.
    M. G. Northolt, Eur. Polym. J. 10 (1974) 799.Google Scholar
  17. 17.
    K. Tashiro, M. Kobayashi and H. Tadokoro, Macromolecules 10 (1977) 413.Google Scholar
  18. 18.
    S. Rojstaczer, D. Cohn and G. Macrom, J. Mater. Sci. Lett. 3 (1984) 1028; 4 (1985) 1233.Google Scholar
  19. 19.
    A. Jain and K. Vijayan, Curr. Sci. 78 (2000) 331.Google Scholar
  20. 20.
    J. H. Wakelin and R. Meredith, Text. Progr. 7(4) (1975).Google Scholar
  21. 21.
    Kevlar 49 Data Manual, E. I. DuPont de Nemours & Co.Google Scholar
  22. 22.
    H. S. Virgin and E. J. Crystal, J. Appl. Phys. 30 (1959) 1654.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • R. V. Iyer
    • 1
  • K. Sooryanarayana
    • 2
  • T. N. Guru Row
    • 2
  • K. Vijayan
    • 1
    Email author
  1. 1.Materials Science DivisionNational Aerospace LaboratoriesBangaloreIndia
  2. 2.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations