Journal of Algebraic Combinatorics

, Volume 16, Issue 2, pp 165–194 | Cite as

Applications of Symmetric Functions to Cycle and Increasing Subsequence Structure after Shuffles

  • Jason Fulman


Using symmetric function theory, we study the cycle structure and increasing subsequence structure of permutations after iterations of various shuffling methods. We emphasize the role of Cauchy type identities and variations of the Robinson-Schensted-Knuth correspondence.

card shuffling RSK correspondence cycle index increasing subsequence 


  1. 1.
    D. Aldous and P. Diaconis, “Shuffling cards and stopping times,” Amer. Math. Monthly 93 (1986), 333–348.MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Arratia, A. Barbour, and S. Tavare, “On random polynomials over finite fields,” Math. Proc. Camb. Phil. Soc. 114 (1993), 347–368.MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Baik, P. Deift, and K. Johansson, “On the distribution of the length of the longest increasing subsequence of random permutations,” J. Amer. Math. Soc. 12 (1999), 1119–1178.MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Baik and E. Rains, “Algebraic aspects of increasing subsequences,” Preprint math.CO/9905083 at Scholar
  5. 5.
    D. Bayer and P. Diaconis, “Trailing the dovetail shuffle to its lair,” Ann. Appl. Probab. 2 (1992), 294–313.MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Berele and J. Remmel, “Hook flag characters and their combinatorics,” J. Pure Appl. Algebra 35 (1985), 225–245.MathSciNetCrossRefGoogle Scholar
  7. 7.
    F. Bergeron and N. Bergeron, “Orthogonal idempotents in the descent algebra of Bn and applications,” J. Pure Appl. Algebra 79 (1992), 109–129.MathSciNetCrossRefGoogle Scholar
  8. 8.
    N. Bergeron and L. Wolfgang, “The decomposition of Hochschild cohomology and the Gerstenhaber operations,” J. Pure Appl. Algebra 104 (1995), 243–265.MathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Bidigare, P. Hanlon, and D. Rockmore, “A combinatorial generalization of the spectrum of the Tsetlin library and its generalization to hyperplane arrangements,” Duke Math J. 99 (1999), 135–174.MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Diaconis, “Group representations in probability and statistics,” Institute of Mathematical Statistics Lecture Notes (1988), Volume 11.Google Scholar
  11. 11.
    P. Diaconis, “From shuffling cards to walking around the building: An introduction to modern Markov chain theory,” in Proceedings of the International Congress of Mathematicians, Vol. 1, Berlin, 1998, Doc. Math. 1998, Extra Vol. I, 187–204 (electronic).MathSciNetzbMATHGoogle Scholar
  12. 12.
    P. Diaconis, J. Fill, and J. Pitman, “Analysis of top to random shuffles,” Combin. Probab. Comput. 1 (1992), 135–155.MathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Diaconis, M. McGrath, and J. Pitman, “Riffle shuffles, cycles, and descents,” Combinatorica 15 (1995), 11–20.MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Erdei, “Proof of a conjecture of Schoenburg on the generating function of a totally positive sequence,” Canad. J. Math 5 (1953), 86–94.CrossRefGoogle Scholar
  15. 15.
    J. Fulman, “The combinatorics of biased riffle shuffles,” Combinatorica 18 (1998), 173–184.MathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Fulman, “Semisimple orbits of Lie algebras and card shuffling measures on Coxeter groups,” J. Algebra 224 (2000), 151–165.MathSciNetCrossRefGoogle Scholar
  17. 17.
    J. Fulman, “Affine shuffles, shuffles with cuts, the Whitehouse module, and patience sorting,” J. Algebra 231 (2000), 614–639.MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Fulman, “Applications of the Brauer complex: Card shuffling, permutation statistics, and dynamical systems,” J. Algebra 243 (2001), 96–122.MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Fulman, “Descent algebras, hyperplane arrangements, and shuffling cards,” Proc. Amer. Math. Soc. 129 (2001), 965–973.MathSciNetCrossRefGoogle Scholar
  20. 20.
    T. Gannon, “The cyclic structure of unimodal permutations,” Discrete Math. 237 (2001), 149–161.MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Garsia, “Combinatorics of the free Lie algebra and the symmetric group,” in “Analysis, et cetera,” Academic Press, Boston, 1990, pp. 309–382.CrossRefGoogle Scholar
  22. 22.
    I. Gessel and C. Reutenauer, “Counting permutations with given cycle structure and descent set,” J. Combin. Theory Ser. A 64 (1993), 189–215.MathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Hanlon, “The action of Sn on the components of the Hodge decomposition of Hochschild homology,” Michigan Math. J. 37 (1990), 105–124.MathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Hansen, “Order statistics for decomposable combinatorial structures,” Rand. Struct. Alg. 5 (1994), 517–533.MathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Johansson, “Discrete orthogonal polynomial ensembles and the Plancharel measure,” Ann. of Math. (2) 153 (2001), 259–296.MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Kerov and A. Vershik, “The characters of the infinite symmetric group and probability properties of the Robinson-Schensted-Knuth algorithm,” SIAM J. Algebraic Discrete Methods 7 (1986), 116–124.MathSciNetCrossRefGoogle Scholar
  27. 27.
    G. Kuperberg, “Random words, quantum statistics, central limits, random matrices,” Preprint math.PR/9909104 at Scholar
  28. 28.
    S. Lalley, “Cycle structure of riffle shuffles,” Ann. Probab. 24 (1996), 49–73.MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. Lalley, “Riffle shuffles and their associated dynamical systems,” J. Theoret. Probab. 12 (1999), 903–932.MathSciNetCrossRefGoogle Scholar
  30. 30.
    I. Macdonald, Symmetric Functions and Hall polynomials, 2nd edition, Clarendon Press, Oxford, 1995.zbMATHGoogle Scholar
  31. 31.
    A. Okounkov, “On the representations of the infinite symmetric group,” Available at math.RT/9803037 at Scholar
  32. 32.
    C. Reutenauer, Free Lie Algebras, London Mathematical Society Monographs. New Series 7. Clarendon Press and Oxford University Press, New York, 1993.zbMATHGoogle Scholar
  33. 33.
    B. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edition, Springer-Verlag, New York, 2001.zbMATHGoogle Scholar
  34. 34.
    S. Shnider and S. Sternberg, Quantum Groups. Graduate Texts in Mathematical Physics, II. International Press, 1993.Google Scholar
  35. 35.
    R. Stanley, “Generalized riffle shuffles and quasisymmetric functions,” Preprint math.CO/9912025 at Scholar
  36. 36.
    R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, New York/Cambridge, 1999.CrossRefGoogle Scholar
  37. 37.
    J. Stembridge, “Shifted tableaux and the projective representations of the symmetric groups,” Adv. in Math. 74 (1989), 87–134.MathSciNetCrossRefGoogle Scholar
  38. 38.
    J.Y. Thibon, “The cycle enumerator of unimodal permutations,” Preprint math.CO/0102051 at Scholar
  39. 39.
    C. Tracy and H. Widom, “On the distributions of the lengths of the longest monotone subsequences in random words,” Probab. Theory Related Fields 119 (2001), 350–380.MathSciNetCrossRefGoogle Scholar
  40. 40.
    A. Vershik and A. Schmidt, “Limit measures arising in the asymptotic theory of symmetric groups,” Prob. Theory. Appl. 22 (1977), 72–88 and 23 (1977), 34–46.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jason Fulman
    • 1
  1. 1.Department of MathematicsUniversity of PittsburghPittsburghUSA

Personalised recommendations