Advertisement

Journal of Quantitative Criminology

, Volume 18, Issue 4, pp 423–439 | Cite as

A Test of Generalizability of the Social Development Model Across Gender and Income Groups with Longitudinal Data from the Elementary School Developmental Period

  • Charles B. FlemingEmail author
  • Richard F. Catalano
  • Monica L. Oxford
  • Tracy W. Harachi
Article

Abstract

The social development model (SDM) is a theory of behavior that has proven useful in explaining the etiology of delinquency, violence, and substance use among adolescents as well as early antisocial behavior among pre-adolescents. A further test of the model is its generalizability across population groups. A section of the SDM representing prosocial influences in the etiology of problem behavior was compared for boys and girls and for children from low- and non low-income families using three waves of child, parent and teacher survey data on a sample of 851 elementary school students. Multiple group structural equation modeling was used to assess differences across groups in both measurement of model constructs and hypothesized structural paths between constructs. The results indicate overall similarity in the reliability of measurement models and validity of structural models.

gender differences income differences problem behavior social development model measurement invariance structural equation modeling etiology of problem behavior risk and protective factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ayers, C. D., Williams, J. H., Hawkins, J. D., Peterson, P. L., Catalano, R. F., and Abbott, R. D. (1999). Assessing correlates of onset, escalation, deescalation, and desistance of delinquent behavior. J. Quant. Criminol. 15: 277-306.Google Scholar
  2. Bandura, A. (1977). Social Learning Theory, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  3. Bentler, P. M. (1995). EQS: Structural Equations Program Manual, BMDP Statistical Software, Los Angeles, CA.Google Scholar
  4. Byrne, B. M. (1994). Structural Equation Modeling with EQS and EQS-Windows: Basic Concepts, Applications and Programming, Sage, Thousand Oaks, CA.Google Scholar
  5. Catalano, R. F., and Hawkins, J. D. (1996). The social development model: A theory of antisocial behavior. In Hawkins, J. D. (ed.), Delinquency and Crime: Current Theories, Cambridge University Press, New York, pp. 149-197.Google Scholar
  6. Catalano, R. F., Hawkins, J. D., Krenz, C., Gillmore, M., Morrison, D., Wells, E., et al. (1993). Using research to guide culturally appropriate drug abuse prevention. J. Consult. Clin. Psychol. 61: 804-811.Google Scholar
  7. Catalano, R. F., Kosterman, R., Hawkins, J. D., Newcomb, M. D., and Abbott, R. D. (1996). Modeling the etiology of adolescent substance use: A test of the social development model. J. Drug Issues 26: 429-455.Google Scholar
  8. Catalano, R. F., Oxford, M. L., Harachi, T. W., Abbott, R. D., and Haggerty, K. P. (1999). A test of the social development model to predict problem behaviour during the elementary school period. Crim. Behav. Ment. Health 9: 39-56.Google Scholar
  9. Cernkovitch, S. A., and Giordano, P. C. (1987). Family relationships and delinquency. Criminology 25: 295-319.Google Scholar
  10. Farrington, D. P., and Hawkins, J. D. (1991). Predicting participation, early onset and later persistence in officially recorded offending. Crim. Behav. Ment. Health 1: 1-33.Google Scholar
  11. Figueira-McDonough, J. (1985). Are girls different? Gender discrepancies between delinquent behavior and control. Child Welf. 64: 273-289.Google Scholar
  12. Gottfredson, D. C., and Koper, C. S. (1996). Race and sex differences in the prediction of drug use. J. Consult. Clin. Psychol. 64: 305-313.Google Scholar
  13. Gottfredson, D. C., and Koper, C. S. (1997). Race and sex differences in the measurement of risk for drug use. J. Quant. Criminol. 13: 325-347.Google Scholar
  14. Griffin, K. W., Botvin, G. J., Scheier, L. M., Diaz, T., and Miller, N. L. (2000). Parenting practices as predictors of substance use, delinquency, and aggression among urban minority youth: Moderating effects of family structure and gender. Psychol. Addict. Behav. 14: 174-184.Google Scholar
  15. Hagan, J., Simpson, J., and Gillis, A. R. (1988). Feminist scholarship, relational and instrumental control, and a power-control theory of gender and delinquency. Br. J. Sociol. 39: 301-336.Google Scholar
  16. Haggerty, K. P., Catalano, R. F., Harachi, T. W., and Abbott, R. D. (1998). Description de l'implementation d'un programme de prévention des problémes de comportement à l'adolescence. (Preventing adolescent problem behaviors: A comprehensive intervention description). Criminologie 31: 25-47.Google Scholar
  17. Hawkins, J. D., Catalano, R. F., Kosterman, R., Abbott, R., and Hill, K. G. (1999). Preventing adolescent health-risk behaviors by strengthening protection during childhood. Arch. Pediatr. Adolesc. Med. 153: 226-234.Google Scholar
  18. Hawkins, J. D., and Weis, J. G. (1985). The social development model: An integrated approach to delinquency prevention. J. Prim. Prev. 6: 73-97.Google Scholar
  19. Heimer, K. (1996). Gender, interaction, and delinquency: Testing a theory of differential social control. Soc. Psychol. Q. 59: 39-61.Google Scholar
  20. Herrenkohl, T. I., Huang, B., Kosterman, R., Hawkins, J. D., Catalano, R. F., and Smith, B. H. (2001). A comparison of the social development processes leading to violent behavior in late adolescence for childhood initiators and adolescent initiators of violence. J. Res. Crime Delinq. 38: 45-63.Google Scholar
  21. Hirschi, T. (1969). Causes of Delinquency, University of California Press, Berkeley, CA.Google Scholar
  22. Hu, L. t., and Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychol. Methods 3: 424-453.Google Scholar
  23. Hu, L. t., and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Model 6: 1-55.Google Scholar
  24. Huang, B., Kosterman, R., Catalano, R. F., Hawkins, J. D., and Abbott, R. D. (2001). Modeling mediation in the etiology of violent behavior in adolescence: A test of the social development model. Criminology 39: 75-107.Google Scholar
  25. Kosterman, R., Hawkins, J. D., Spoth, R., Haggerty, K. P., and Zhu, K. (1997). Effects of a preventive parent-training intervention on observed family interactions: Proximal outcomes from preparing for the Drug Free Years. J. Comm. Psychol. 25: 337-352.Google Scholar
  26. Lonczak, H. S., Huang, B., Catalano, R. F., Hawkins, J. D., Hill, K. G., Abbott, R. D., et al. (2001). The social predictors of adolescent alcohol misuse: A test of the Social Development Model. J. Stud. Alcohol 62: 179-189.Google Scholar
  27. Marshal, M. P., and Chassin, L. (2000). Peer influence on adolescent alcohol use: The moderating role of parental support and discipline. Appl. Dev. Sci. 4: 80-88.Google Scholar
  28. Matsueda, R. L. (1988). The current state of differential association theory. Crime Delinq. 34: 277-306.Google Scholar
  29. Rosay, A. B., Gottfredson, D. C., Armstrong, T. A., and Harmon, M. A. (2000). Invariance of measures of prevention program effectiveness: A replication. J. Quant. Criminol. 16: 341-367.Google Scholar
  30. Siddiqui, O., Mott, J., Anderson, T., and Flay, B. (1999). The application of poisson randomeffects regression models to the analyses of adolescents' current level of smoking. Prev. Med. 29: 92-101.Google Scholar
  31. Tucker, L. R., and Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika 38: 1-10.Google Scholar
  32. Vandenberg, R. J., and Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organ. Res. Methods 3: 4-69.Google Scholar
  33. Wheaton, B. (1988). Assessment of fit in overidentified models with latent variables. In Long, J. S. (ed.), Common Problems/Proper Solutions: Avoiding Error in Quantitative Research, Sage, Newbury Park, CA, pp. 193-225.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Charles B. Fleming
    • 1
    Email author
  • Richard F. Catalano
    • 1
  • Monica L. Oxford
    • 2
  • Tracy W. Harachi
    • 1
  1. 1.Social Development Research Group, School of Social WorkUniversity of WashingtonSeattle
  2. 2.School of Social WorkUniversity of WashingtonSeattle

Personalised recommendations