Siberian Mathematical Journal

, Volume 43, Issue 6, pp 977–984 | Cite as

On Generalized (σ,τ)-Derivations

  • N. Argac
  • E. Albas
Article

Abstract

We generalize the notion of (σ,τ)-derivation of Nakajima and Bresar. We define the generalized (σ,τ)-derivations, generalized Jordan (σ,τ)-derivations, and generalized Lie (σ,τ)-derivations, We study interrelations between these classes of derivations as well as their homological properties.

generalized derivation noncommutative ring bimodule exact sequence of modules splitting sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bres ar M., “On the distance of the composition of two derivations to the generalized derivations,” Glasgow Math. J., 33, 89–93 (1991).Google Scholar
  2. 2.
    Hvala B., “Generalized derivations in rings,” Comm. Algebra, 26, No. 4, 1147–1166 (1998).Google Scholar
  3. 3.
    Nakajima A., “On categorical properties of generalized derivations,” Sci. Math., 2, 345–352 (1999).Google Scholar
  4. 4.
    Nakajima A., “Generalized Jordan derivations,” in: International Conference on Ring Theory, Birkhäuser, Boston, 2000, pp. 235–243.Google Scholar
  5. 5.
    Cusack J. M., “Jordan derivations on rings,” Proc. Amer. Math. Soc., 53, 321–324 (1975).Google Scholar
  6. 6.
    Herstein I. N., “Jordan derivations of prime rings,” Proc. Amer. Math. Soc., 8, 1104–1110 (1957).Google Scholar
  7. 7.
    Herstein I. N., Topics in Ring Theory, Univ. of Chicago Press, Chicago; London (1969).Google Scholar
  8. 8.
    Bres ar M. and Vukman J., “Jordan (θ, ϕ)-derivations,” Glasnik Mat., 26, 13–17 (1991).Google Scholar
  9. 9.
    Smiley M. F., “Jordan homomorphisms onto prime rings,” Proc. Amer. Math. Soc., 8, 426–429 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • N. Argac
    • 1
  • E. Albas
    • 1
  1. 1.Ege UniversityIzmirTurkey

Personalised recommendations