International Journal of Primatology

, Volume 23, Issue 6, pp 1169–1185 | Cite as

Digestive Retention Times in Forest Guenons (Cercopithecus spp.) with Reference to Chimpanzees (Pan troglodytes)

  • Joanna E. Lambert


Because the length of time food is maintained in the gut influences fermentation rates and its overall digestibility, information on digestive passage rates is critical to explain the overall feeding and foraging strategy of a species. I present results from digestive passage experiments conducted on captive Cercopithecus ascanius, C. mitis, C. neglectus, Miopithecus talapoin, and Pan troglodytes. I recorded several measures of digestive passage time, including transit time (time of first marker appearance; TT), mean retention time of markers (MRT), and time of last appearance of a marker (TLA). I conducted 4 trials on each of the 10 subjects. A trial consists of the administration of 20, non-toxic colored plastic markers. Overall, the 5 species varied in digestive times (p < 0.01), but there is no difference between Cercopithecus neglectus and Pan troglodytes (p = 0.131) or between C. mitis and C. ascanius (p = 0.661). When the effect of body size is removed (by computing the ratio y/x, where x = body mass, and y = MRT), Pan troglodytes exhibits a low ratio, suggesting relatively slow retention times in the 4 cercopithecines. My findings and other published digestive passage rates suggest that lengthy digestive retention times may be characteristic of cercopithecines. These data may help to interpret how the smaller-bodied guenons are able to consume a higher percentage of fiber than that of chimpanzees, a specialized frugivore. Small body size, in combination with long digestive passage times may be an adaptation on the part of Cercopithecus species to consume a high fiber diet, while maintaining a greater capacity to detoxify secondary metabolites.

digestive ecology body size plant secondary metabolites feeding niche primate diet Miopithecus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afik, D., and Karasov, W. H. (1995). The trade-offs between digestion rate and efficiency in warblers and their ecological implications. Ecology 76: 2247–2257.Google Scholar
  2. Bell, R. H. V. (1971). A grazing ecosystem in the Serengeti. Sci. Am. 225: 86–93.Google Scholar
  3. Bjorndal, K. A. (1989). Flexibility of digestive responses in two generalist herbivores, the tortoises Geochlone carbonaria and Geochelone denticulata. Oecologia 78: 317–321Google Scholar
  4. Caton, J. M. (1999). Digestive strategy of the Asian colobine genus Trachypithecus. Primates 40: 311–325.Google Scholar
  5. Chivers, D. J., and Hladik, C. M. (1980). Morphology of the gastrointestinal tract in primates: Comparisons with other mammals in relation to diet. J. Morphol. 116: 337–386.Google Scholar
  6. Clemens, E. T., and Moloiy, G.M.O. (1981). Organic acid concentrations and digesta movement in the gastrointestinal tract of the bushbaby (Galago crassicaudatus) and vervet monkey (Cercopithecus aethiops). J. Zool. Lond. 193: 487–497.Google Scholar
  7. Clemens, E. T., and Phillips, B. (1980). Organic acid production and digesta movement in the gastrointestinal tract of the baboon and sykes monkey. Comp. Biochem. Physiol. 66: 529–532.Google Scholar
  8. Cords, M. (1986). Interspecific and intraspecific variation in diet of two forest guenons, Cercopithecus ascanius and C. mitis. J. Anim. Ecol. 55: 811–827.Google Scholar
  9. Cork, S. J., and Foley, W. J. (1991). Digestive and metabolic strategies of arboreal folivores in relation to chemical defenses in temperate and tropical forests. In Palo, R. T., and Robbins, C. T. (eds.), Plant Defenses Against Mammalian Herbivory, CRC Press, Boca Raton, FL, pp. 133–167.Google Scholar
  10. Demment, M. W., and Van Soest, P. J. (1983). Body Size, Digestive Capacity, and Feeding Strategies of Herbivores,Winrock International, Morrilton, AR.Google Scholar
  11. Dierenfeld, E. S., Koontz, F.W., and Goldstein, R. S. (1992). Feed intake, digestion and passage of the Proboscis monkey (Nasalis larvatus) in captivity. Primates 33: 399–405.Google Scholar
  12. Feer, F. (1995). Seed dispersal in African forest ruminants. J. Trop. Ecol. 11: 683–689.Google Scholar
  13. Foley, W. J., and McArthur, C. (1994). The effects and costs of allelochemicals for mammalian herbivores: An ecological perspective. In Chivers, D. J., and Langer, P. (eds.), The Digestive System of Mammals, Cambridge University Press, Cambridge, UK, pp. 370–391.Google Scholar
  14. Freeland, W. J. (1991). Plant secondary metabolites. Biochemical coevolution with herbivores.In Palo, R. T., and Robbins, C. T. (eds.), Plant Defenses Against Mammalian Herbivory, CRC Press, Boca Raton, FL, pp. 61–82.Google Scholar
  15. Freeland, W. J., and Janzen, D. H. (1974). Strategies in herbivory by mammals: The role of plant secondary compounds. Am. Nat. 108: 269–289.Google Scholar
  16. Gaulin, S. J. C. (1979). A Jarman/Bell model of primate feeding niches. Hum. Ecol. 7: 1–20.Google Scholar
  17. Gautier-Hion, A. (1988). The diet and dietary habits of forest guenons. In Gautier-Hion, A., Bourliere, F., and Gautier, J.-P. (eds.), A Primate Radiation: Evolutionary Biology of the African Guenons, Cambridge University Press, Cambridge, UK, pp. 257–283.Google Scholar
  18. Hill, W. C. O. (1958). Pharynx, oesophagus, stomach, small intestine and large intestine: Form and position. In Hofer, H., Schultz, A. H., and Starck, D., (eds.), Primatologica: Handbook of Primatology, Vol. III, Basel, New York, pp. 139–207.Google Scholar
  19. Hladik, C. M. (1967). Surface relative du tractus digestif de quelques primates, morphologie des villosites intestinales et correlations avec le regime alimentaire. Mammalia 31:120–147.Google Scholar
  20. Illius, A.W., and Gordon, I. J. (1992). Modelling the nutritional ecology of ungulate herbivores: Evolution of body size and competitive interaction. Oecologia 89: 428–434.Google Scholar
  21. Jarman, P. J. (1974). The social organization of antelope in relation to their ecology. Behavior 58: 215–267.Google Scholar
  22. Kaplin, B. A., and Moermond, T. C. (2000). Foraging ecology of the mountain monkey (Cercopithecus l'hoesti): Implications for its evolutionary history and use of disturbed forest.Am. J. Primatol. 50:227–246.Google Scholar
  23. Kaplin, B. A., Munyaligoga, V., and Moermond, T. C. (1998). The influence of temporal changes in fruit availability on diet composition and seed handling in blue monkeys (Cercopithecus mitis doggetti). Biotropica 30:56–71.Google Scholar
  24. Kay, R. N. B. (1985). Comparative studies of food propulsion in ruminants. In Ooms, L. A. A., Degryse, A. D., and van Miert, A. S. J. A. M. (eds.), Physiological and Pharmacological Aspects of the Reticulo-Rumen, Martinus Nijhoff, Dordrecht, pp. 155–170.Google Scholar
  25. Kay, R. N. B., and Davies, A. G. (1994). Digestive physiology. In Davies, A. G., and Oates, J. F. (eds.), Colobine Monkeys: Their Ecology, Behavior and Evolution, Cambridge University Press, Cambridge, UK, pp. 229–259.Google Scholar
  26. Lambert, J. E. (1997). Digestive Strategies, Fruit Processing, and Seed Dispersal in the Chimpanzees (Pan troglodytes) and Redtail Monkeys (Cercopithecus ascanius) of Kibale National Park, Uganda, PhD Dissertation, University of Illinois, Urbana-Champaign.Google Scholar
  27. Lambert, J. E. (1998). Primate digestion: Interactions among anatomy, physiology, and feeding ecology. Evol. Anthropol. 7: 8–20.Google Scholar
  28. Lambert, J. E. (1999). Seed handling in chimpanzees (Pan troglodytes) and redtail monkeys (Cercopithecus ascanius): Implications for understanding hominoid and cercopithecine fruit processing strategies and seed dispersal. Am. J. Phys. Anthropol. 109: 365–386.Google Scholar
  29. Lambert, J. E. (2000). Urine drinking in wild Cercopithecus ascanius: Evidence of nitrogen balancing? African J. Ecol. 8: 360–362.Google Scholar
  30. Lambert, J. E. (2001). Red-tailed guenons (Cercopithecus ascanius) and Strychnos mitis: Evidence for plant benefits beyond seed dispersal. Int. J. Primatol. 22(2): 189–201.Google Scholar
  31. Lambert, J. E. (2002). Resource switching in guenons: a community analysis of dietary flexibility.In Glenn, M. and Cords, M. (eds), Guenons: Diversity and Adaptation in African Monkeys Kluwer Academic Press, New York, pp. 303–317.Google Scholar
  32. Levey, D. J., and Karasov, W. H. (1992). Digestive modulation in a seasonal frugivore, the American Robin (Turdus migratorius). Am. J. Physiol. 262: 711–718.Google Scholar
  33. Maisels, F. (1993). Gut passage rate in guenons and mangabeys: Another indicator of a flexible dietary niche? Folia Primatol. 61: 35–37.Google Scholar
  34. Martin, R.D. (1990). Primate Origins and Evolution: A Phylogenetic Reconstruction. Princeton University Press, New Jersey.Google Scholar
  35. Martin, R. D., Chivers, D. J., MacLarnon, A. M., and Hladik, C. M. (1985). Gastrointestinal allometry in primates and other mammals. In Jungers, W. L. (ed.), Size and Scaling in Primate Biology. Plenum Press, New York, pp. 61–89.Google Scholar
  36. Milton, K. (1981). Food choice and digestive strategies of two sympatric primate species. Am.Nat. 117: 496–505.Google Scholar
  37. Milton, K. (1984). The role of food processing factors in primate food choice. In Rodman, P. S., and Cant, J. G. H. (eds.), Adaptations for Foraging in Nonhuman Primates: Contributions to an Organismal Biology of Prosimians, Monkeys and Apes, Columbia University Press, New York, pp. 249–279.Google Scholar
  38. Milton, K. (1986). Digestive physiology in primates. News Physiol. Sci. 1:76–79.Google Scholar
  39. Milton, K. (1993). Diet and primate evolution. Sci. Am. (Aug.): 269(2): 86–93.Google Scholar
  40. Milton, K. (1998). Physiological ecology of howlers (Alouatta): Energetic and digestive considerations and comparison with the Colobinae. Int. J. Primatol. 19:513–548.Google Scholar
  41. Milton, K., and Demment, M. (1988). Digestive and passage kinetics of chimpanzees fed high and low fiber diets and comparison with human data. J. Nutr. 118:1–7.Google Scholar
  42. Mitchell, P.C. (1905). On the intestinal tract of mammals.Trans. the Zool. Soc. Lond. 17:437–536.Google Scholar
  43. Overdorff, D., and Rassmussen, M. A. (1995). Determinants of nighttime activity in “diurnal” lemurid primates. In Alterman, L., Doyle, G. A., and Izard, M. K. (eds.), Creatures of the Dark: The Nocturnal Prosimians, Plenum Press, New York, pp. 61- 74.Google Scholar
  44. Parra, R. (1978). Comparison of foregut and hindgut fermentation in herbivores. In Montgomery, G. G. (ed.), The Ecology of Arboreal Folivores, Smithsonian Institution Press, Washington, DC, pp. 205–229.Google Scholar
  45. Prop, J., and Vulink, T. (1992). Digestion by barnacle geese in the annual cycle: The interplay between retention time and food quality. Func. Ecol. 6: 180–189.Google Scholar
  46. Remis, M. J. (2000). Initial studies on the contributions of body size and gastrointestinal passage rates to dietary flexibility among gorillas. Am. J. Phys. Anthropol. 112: 171–180.Google Scholar
  47. Rudran, R. (1978). Socioecology of the blue monkeys of the KibaleForest, Uganda. Smithsonian Contributions to Zoology, Vol. 249, Smithsonian Institution Press, Washington, DC.Google Scholar
  48. Schmidt-Nielson, K. (1997). Animal Physiology: Adaptation and Environment, Cambridge University Press, Cambridge, UK.Google Scholar
  49. Stevens, C. E., and Hume, I. D. (1995). Comparative Physiology of the Vertebrate Digestive System, Cambridge University Press, New York.Google Scholar
  50. Tutin, C. E. G. (1999). Fragmented living: Behavioural ecology of primates in a forest fragment in the Lope reserve, Gabon. Primates 40: 249–265.Google Scholar
  51. Van Soest, P. J. (1996). Allometry and ecology of feeding behavior and digestive capacity in herbivores: A review. Zoo Biol. 15: 455–479.Google Scholar
  52. Walker, C. H. (1978). Species differences in microsomal monooxygenase activity and their relationship to biological half-lives. Drug Metabol. Rev. 7: 295–310.Google Scholar
  53. Warner, A. C. I. (1981). Rate of passage of digesta through the gut of mammals and birds. Nutr.Abstr. Rev. Ser. B. 51: 789–820.Google Scholar
  54. Waser, P. M. (1977). Mangabey feeding, movements, and group size. In Clutton-Brock, T. H. (eds.), Primate Ecology: Studies of Feeding and Ranging Behavior in Lemurs, Monkeys and Apes, Academic Press, London, pp. 183–222.Google Scholar
  55. Wrangham, R. W., Conklin-Brittain, N. L., and Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I: Antifeedants. Int.J. Primatol. 19: 949–970.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Joanna E. Lambert
    • 1
  1. 1.Department of AnthropologyUniversity of OregonEugene

Personalised recommendations