Large-Scale Turbulent Vortical Structures inside a Sudden Expansion Cylinder Chamber

  • Sang Cheol Ko
  • Hyung Jin Sung


A large eddy simulation (LES) is performed for turbulent flow around a bluff body inside a sudden expansion cylinder chamber, a configuration which resembles a premixed gas turbine combustor. To promote turbulent mixing and to accommodate flame stability, a flame holder is installed inside the combustion chamber. The Smagorinsky model and the Lagrangian dynamic subgrid-scale model are employed and tested. The calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of inlet pipe. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The predicted turbulent statistics are evaluated by comparing with the laser-doppler velocimetry (LDV) measurement data. The agreement of LES with the experimental data is shown to be satisfactory. Emphasis is placed on the time-dependent evolutions of turbulent vortical structures behind the flame holder. The numerical flow visualizations depict the behavior of large-scale vortices. The turbulent behavior behind the flame holder is analyzed by visualizing the sectional views of vortical structure.

flame holder generalized coordinate large eddy stimulation large-scale vortical structure physical contravariant velocity component 


  1. 1.
    Akselvoll, K. and Moin, P., Large-eddy simulation of turbulent confined coannular jets. J. Fluid Mech. 315 (1996) 387-411.CrossRefADSGoogle Scholar
  2. 2.
    Johnson, B.V. and Bennet, J.C., Statistical characteristics of velocity, concentration, mass transport, and momentum transport for coaxial jet mixing in a confined duct. J. Gas Turbines and Power 106 (1984) 121-127.CrossRefGoogle Scholar
  3. 3.
    Amano, K., Inage, S., Yamakata, M. and Taniguchi, M., Numerical simulation of turbulent premixed flame around a bluff body using the k-ε and flamelet models. In: Durst, F., Launder, B.E., Reynolds, W.C., Schmidt, F.W. and Whitelaw, J.H. (eds.), Proceedings of the Ninth Symposium on Turbulent Shear Flows, Kyoto, Japan. Springer-Verlag, Berlin (1993) pp. 301-304.Google Scholar
  4. 4.
    Inage, S., Vincent, P. and Kobayashi, N., A evaluation of premixed combustion around a bluff body using a new combustion model. Trans. JSME B 63 (1997) 2876-2883 [in Japanese].Google Scholar
  5. 5.
    Inage, S. and Kobayashi, N., A numerical simulation of turbulent premixed flame stabilized by a pilot flame and bluff body. Trans. JSME B 63 (1997) 3758-3763 [in Japanese].Google Scholar
  6. 6.
    Ko, S.C. and Sung, H.J., Large-eddy simulation of turbulent flow inside a sudden-expansion cylindrical chamber. J. Turbulence 3 (2002) 4.zbMATHCrossRefADSGoogle Scholar
  7. 7.
    Demirdzic, I., Gosman, A.D., Issa, R.I. and Peric, M., A Calculation precedure for turbulent flow in complex geometries. Comput. & Fluids 15 (1987), 251-273.zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Smagorinsky, J., General calculation experiments with the primitive equations. I. The basic experiment. Monthly Weather Rev. 91 (1963) 99-164.ADSGoogle Scholar
  9. 9.
    Meneveau, C., Lund, T.S. and Cabot, W., A Lagrangian dynamic subgrid-scale model for turbulence. In: Moin, P., Reynolds, W.C. and Kim, J. (eds.), Proceedings of the Summer Program (Center for Turbulence Research). NASA Ames/Stanford University (1994) pp. 271-299.Google Scholar
  10. 10.
    Van Driest, E.R., On turbulent flow near a wall. J. Aero. Sci. 23 (1956) 1007-1011.zbMATHGoogle Scholar
  11. 11.
    Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R. and Nieuwstadt, F.T.M., Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment. J. Fluid Mech. 268 (1994) 175-209.CrossRefADSGoogle Scholar
  12. 12.
    Hirt, C.W. and Cook, J.L., Calculating three-dimensional flows around structures and over rough terrain. J. Comput. Phys. 10 (1972) 324-340.zbMATHCrossRefADSGoogle Scholar
  13. 13.
    Morinishi, Y. and Kobayashi, T., Development and estimation of the LES using the artificial wall boundary condition. Trans. JSME B 57 (1991) 2595-2601 [in Japanese].Google Scholar
  14. 14.
    Dai, Y., Kobayashi, T. and Taniguchi, N., Large eddy simulation of plane turbulent jet using a new outlet velocity boundary condition. JSME Internat. J. B 37 (1994) 242-253.Google Scholar
  15. 15.
    Liepmann, D. and Gharib, M., The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245 (1992) 643-668.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Sang Cheol Ko
    • 1
  • Hyung Jin Sung
    • 1
  1. 1.Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations