Journal of Nanoparticle Research

, Volume 4, Issue 4, pp 337–343 | Cite as

Homogeneous ZnO Nanoparticles by Flame Spray Pyrolysis

Article

Abstract

Zinc oxide (ZnO) nanoparticles were made by flame spray pyrolysis (FSP) of zinc acrylate–methanol–acetic acid solution. The effect of solution feed rate on particle specific surface area (SSA) and crystalline size was examined. The average primary particle diameter can be controlled from 10 to 20 nm by the solution feed rate. All powders were crystalline zincite. The primary particle diameter observed by transmission electron microscopy (TEM) was in agreement with the equivalent average primary particle diameter calculated from the SSA as well as with the crystalline size calculated from the X-ray diffraction (XRD) patterns for all powders, indicating that the primary particles were rather uniform in diameter and single crystals. Increasing the solution feed rate increases the flame height, and therefore coalescence and/or surface growth was enhanced, resulting in larger primary particles. Compared with ZnO nanoparticles made by other processes, the FSP-made powder exhibits some of the smallest and most homogeneous primary particles. Furthermore, the FSP-made powder has comparable BET equivalent primary particle diameter with but higher crystallinity than sol–gel derived ZnO powders.

zinc oxide nanoparticles flame spray pyrolysis particle morphology aerosols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baklanov, A., B. Gorbunov & A. Safatov, 1999. Generator of ZnO particles with modified surface. J. Aerosol Sci. 30(Suppl. 1), S823-S824.Google Scholar
  2. Carnes, C.L. & K.J. Klabunde, 2000. Synthesis, isolation and chemical reactivity studies of nanocrystalline zinc oxide. Langmuir 16(8), 3764-3772.Google Scholar
  3. Carroz, J.W., F.K. Odencrantz, W.G. Finnegan & D.C. Drehmel, 1980. Aerosol generation to simulate specific industrial fine particle effluents. Am. Ind. Hyg. Assoc. J. 41, 77-84.Google Scholar
  4. de Sousa, V.C., M.R. Morelli & R.H.G. Kiminami, 2000. Combustion process in the synthesis of ZnO-Bi2O3. Ceram. Int. 26(5), 561-564.Google Scholar
  5. El Shall, M.S., D. Graiver, U. Pernisz & M.I. Baraton, 1995. Synthesis and characterization of nanoscale zinc oxide particles: 1. Laser vaporization condensation technique. Nanostruct. Mater. 6(1-4), 297-300.Google Scholar
  6. Gardner, T.J., D.W. Sproson & G.L. Messing, 1984. Precursor chemistry effects on development of particulate morphology during evaporative decomposition of solutions. Mat. Res. Soc. Symp. Proc. 32, 227-232.Google Scholar
  7. Hingorani, S., V. Pillai, P. Kumar, M.S. Multani & D.O. Shah, 1993. Microemulsion mediated synthesis of zinc-oxide nanoparticles for varistor studies. Mater. Res. Bull. 28(12), 1303-1310.Google Scholar
  8. Jensen, J.R., T. Johannessen, S. Wedel & H. Livbjerg, 2000. Preparation of ZnO-Al2O3 particles in a premixed flame. J. Nanoparticle Res. 2, 363-373.Google Scholar
  9. Kammler, H.K., L. Mädler & S.E. Pratsinis, 2001. Flame synthesis of nanoparticles. Chem. Eng. Technol. 24(6), 583-596.Google Scholar
  10. Kaneko, D., H. Shouji, T. Kawai & K. Kon-No, 2000. Synthesis of ZnO particles by ammonia-catalyzed hydrolysis of zinc dibutoxide in nonionic reversed micelles. Langmuir 16(9), 4086-4089.Google Scholar
  11. Kang, Y.C. & S.B. Park, 1997. Effect of preparation conditions on the formation of primary ZnO particles in filter expansion aerosol generator. J. Mater. Sci. Lett. 16(2), 131-133.Google Scholar
  12. Karpetis, A.N. & A. Gomez, 2000. Anexperimental study of welldefined turbulent nonpremixed spray flames. Combust. Flame 121(1-2), 1-23.Google Scholar
  13. Klug, H.P. & L.E. Alexander, 1974. X-ray Diffraction Procedures. John Wiley & Sons, New York, London, Sydney, Tronto.Google Scholar
  14. Koch, U., A. Fojtik, H. Weller & A. Henglein, 1985. Photochemistry of Semiconductor Colloids. Preparation of Extremely Small ZnO Particles, Fluorescence Phenomena and Size Quantization Effects. Chem. Phys. Lett. 122(5), 507-510.Google Scholar
  15. Lacson, J., 2000. Inorganic Zinc Chemicals. Chemical Economics Handbook, electronic release, SRI International, Menlo Park CA, USA.Google Scholar
  16. Laine, R.M., T. Hinklin, G. Williams & S.C. Rand, 2000. Lowcost nanopowders for phosphor and laser applications by flame spray pyrolysis. Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2. Trans Tech Publications Ltd, Zurich-Uetikon 500-510.Google Scholar
  17. Li, W.J., E.W. Shi, M.Y. Tian, W.Z. Zhong & Z.W. Yin, 1999. The synthesis of ZnO acicular particles by the hydrothermal discharging-gas method. J. Mater. Res. 14(4), 1532-1537.Google Scholar
  18. Liedekerke, M.D., 2001. Pigment, inorganic, 2.3 zinc oxide (zinc white). Ullmann's Encyclopedia of Industrial Chemistry, Sixth edn., electronic release.Wiley-VCH Verlag GmbH, Weinheim, Germany.Google Scholar
  19. Lin,Y.H., Z.L. Tang, Z.T. Zhang, F.L.Yuan, Y.B. Ling, J.L. Lee & S.L. Huang, 2000. Preparation of nanometer zinc oxide powders by plasma pyrolysis technology and their applications. J. Am. Ceram. Soc. 83(11), 2869-2871.Google Scholar
  20. Mädler, L., H.K. Kammler, R. Müller & S.E. Pratsinis, 2002. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33(2), 161-181 (see also www.ivuk.ethz.ch/staff/maedler).Google Scholar
  21. Marinkovic, B.A., Z. Zakula, S. Duric, N. Nikolic, O. Milosevic & M.M. Ristic, 2000. Line-profile analysis of nanostructured ZnO powders obtained by freeze-drying method. European Powder Diffraction, Pts 1 and 2, Trans Tech Publications Ltd, Zurich-Uetikon, 1068-1073.Google Scholar
  22. Marshall, B.S., I. Telford & R.Wood, 1971. A field method for the determination of zinc oxide fume in air. Analyst 96, 569-578.Google Scholar
  23. Matsoukas, T. & S.K. Friedlander, 1991. Dynamics of Aerosol Agglomerate Formation. J. Colloid Interface Sci. 146(2), 495-506.Google Scholar
  24. McCarthy, J.F., G.J. Yurek, J.F. Elliott & M.O. Amdur, 1982. Generation and characterization of submicron aerosols of zinc oxide. Am. Ind. Hyg. Assoc. J. 43(12), 880-886.Google Scholar
  25. Messing, G.L., S.C. Zhang & G.V. Jayanthi, 1993. Ceramic powder synthesis by spray-pyrolysis. J. Am. Ceram. Soc. 76(11), 2707-2726.Google Scholar
  26. Monticone, S., R. Tufeu & A.V. Kanaev, 1998. Complex nature of the UV and visible fluorescence of Colloidal ZnO nanoparticles. J. Phys. Chem. B 102(16), 2854-2862.Google Scholar
  27. Pratsinis, S.E., 1998. Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24(3), 197-219.Google Scholar
  28. Pratsinis, S.E. & S.V.R. Mastrangelo, 1989. Material synthesis in aerosol reactors. Chem. Eng. Prog. 85(5), 62-66.Google Scholar
  29. Pratsinis, S.E., W.H. Zhu & S. Vemury, 1996. The role of gas mixing in flame synthesis of titania powders. Powder Technol. 86(l), 87-93.Google Scholar
  30. Rensmo, H., K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S.E. Lindquist, L.N. Wang & M. Muhammed, 1997. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B 101(14), 2598-2601.Google Scholar
  31. Sokolowski, M., A. Sokolowska, A. Michalski & B. Gokieli, 1977. The 'In-flame-reaction' method for Al2O3 aerosol formation. J. Aerosol Sci. 8, 219-230.Google Scholar
  32. Suzuki, M., M. Kagawa, Y. Syono & T. Hirai, 1992. Synthesis of ultrafine single-component oxide particles by the spray-ICP technique. J. Mater. Sci. 27(3), 679-684.Google Scholar
  33. Teague, S.V. & O.G. Raabe, 1980. Generation of fume aerosols of zinc oxide. Am. Ind. Hyg. Assoc. J. 41, 680-683.Google Scholar
  34. Windeler, R.S., S.K. Friedlander & K.E.J. Lehtinen, 1997. Production of nanometer-sized metal oxide particles by gas phase reaction in a free jet. 1. Experimental system and results. Aerosol Sci. Technol. 27(2), 174-190.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Takao Tani
    • 1
  • Lutz Mädler
    • 1
  • Sotiris E. Pratsinis
    • 1
  1. 1.Department Of Mechanical And Process Engineering, ETH ZurichInstitute Of Process EngineeringZurichSwitzerland

Personalised recommendations