Advertisement

Theoretical and Mathematical Physics

, Volume 133, Issue 2, pp 1516–1528 | Cite as

Integrable Quasilinear Equations

  • R. Hernández Heredero
Article
  • 34 Downloads

Abstract

We develop a classification scheme for integrable third-order scalar evolution equations using the symmetry approach to integrability. We use this scheme to study quasilinear equations of a particular type and prove that several equations that were suspected to be integrable can be reduced to the well-known Korteweg–de Vries and Krichever–Novikov equations via a Miura-type differential substitution.

classification of integrable differential equations formal symmetry approach differential substitutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    L. Abellanas and A. Galindo, Phys. Lett. A, 107, 159–160 (1985); F. Calogero and A. Degasperis, J. Math. Phys., 22, 23–31 (1981); A. S. Fokas, J. Math. Phys., 21, 1318–1325 (1980).Google Scholar
  2. 2.
    R. Hernánder Heredero, V. V. Sokolov, and S. I. Svinolupov, J. Phys. A, 27, 4557–4568 (1994).Google Scholar
  3. 3.
    N. Kh. Ibragimov and A. B. Shabat, Funct. Anal. Appl., 14, 19–28 (1980).Google Scholar
  4. 4.
    A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, “The symmetry approach to classification of integrable equations,” in: What is Integrability? (V. Zakharov, ed.), Springer, Berlin (1991), pp. 115–184.Google Scholar
  5. 5.
    S. I. Svinolupov and V. V. Sokolov, Funct. Anal. Appl., 16, 317–319 (1982).Google Scholar
  6. 6.
    H. D. Wahlquist and F. B. Estabrook, J. Math. Phys., 16, 1–7 (1975).Google Scholar
  7. 7.
    S. I. Svinolupov and V. V. Sokolov, Russ. Math. Surveys, 47, 127–162 (1992).Google Scholar
  8. 8.
    H. H. Chen, Y. C. Lee, and C. S. Liu, Phys. Scripta, 20, 490–492 (1979).Google Scholar
  9. 9.
    N. Kh. Ibragimov and A. B. Shabat, Funct. Anal. Appl., 14, 313–315 (1980).Google Scholar
  10. 10.
    V. V. Sokolov and A. B. Shabat, Sov. Sci. Rev. Sect. C, Math. Phys. Rev., 4, 221–280 (1984).Google Scholar
  11. 11.
    F. Kh. Mukminov and V. V. Sokolov, Math. USSR Sb., 61, 389–410 (1988).Google Scholar
  12. 12.
    V. V. Sokolov, Russ. Math. Surveys, 43, 165–204 (1988).Google Scholar
  13. 13.
    R. Hernánder Heredero, V. V. Sokolov, and S. I. Svinolupov, “Why are there so many integrable evolution equations of third order?” in: Nonlinear Evolution Equations and Dynamical Systems (NEEDS'94) (Proc. 10th Intl.Workshop, Los Alamos, NM, USA, September 11–18, 1994, V. G. Makhanov, A. R. Bishop, and D. D. Holm, eds.), World Scientific, Singapore (1995), pp. 42–53.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • R. Hernández Heredero
    • 1
  1. 1.Departamento de Física Teórica IIUniversidad ComplutenseMadridSpain

Personalised recommendations