Advertisement

Journal of Polymers and the Environment

, Volume 10, Issue 4, pp 133–138 | Cite as

Effects of Starch Moisture on Properties of Wheat Starch/Poly(Lactic Acid) Blend Containing Methylenediphenyl Diisocyanate

  • Hua Wang
  • Xiuzhi SunEmail author
  • Paul Seib
Article

Abstract

Methylenediphenyl diisocyanate was found to improve the interfacial interaction between poly(lactic acid)(PLA) and granular starch. The objective of this research was to study the effect of starch moisture content on the interfacial interaction of an equal-weight blend of wheat starch and PLA containing 0.5% methylenediphenyl diisocyanate by weight. Starch moisture (10% to 20%) had a negative effect on the interfacial binding between starch and PLA. The tensile strength and elongation of the blend both decreased as starch moisture content increased. At 20% moisture level, the starch granules embedded in the PLA matrix were observed to be swollen, resulting in poor strength properties and high water absorption by the blend.

Biodegradable plastic poly(lactic acid) starch methylenediphenyl diisocyanate water absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Narayan (1993) in M. L. Fisherman, R. B. Friedman, and S. J. Huang (Eds.), Polymers from Agricultural Coproducts, ACS Symposium Series 575, American Chemical Society, Washington, DC, pp. 2-28.Google Scholar
  2. 2.
    R. Datta, S. Tsai, P. Bonsignore, S. Moon, and J. R. Frank (1995) FEMS Microbiol. Rev. 16, 221-231Google Scholar
  3. 3.
    M. H. Naitove (1998) Plast. Technol. 44(1), 13-15.Google Scholar
  4. 4.
    B. M. Walker (1987) in H. S. Katz, and J. V. Milewski (Eds.), Handbook of Fillers for Plastics, Van Nostrand Reinhold Co., New York, pp. 420-426.Google Scholar
  5. 5.
    S. Jacobsen and H. G. Fritz (1996) Polym. Eng. Sci. 36, 2799-2804.Google Scholar
  6. 6.
    S. H. Kim, I. Chin, J. Yoon, S. H. Kim, and J. Jung (1998) Korea Polym. J. 6, 422-427.Google Scholar
  7. 7.
    D. Carlson, L. Nie, R. Narayan, and P. Dubois (1999) J. Appl. Polym. Sci. 72, 477-485.Google Scholar
  8. 8.
    H. Wang, X. Sun, and P. Seib (2001) J. Appl. Polym. Sci. 82, 1761-1767.Google Scholar
  9. 9.
    K. Hiltunen, J. V. Seppälä, and M. Härkönen (1997) J. Appl. Polym. Sci. 63, 1091-1100.Google Scholar
  10. 10.
    R. Alfani, S. Iannace, and L. Nicolais (1998) J. Appl. Polym. Sci. 68, 739-745.Google Scholar
  11. 11.
    S. Hizykuri (1996) in A. Eliasson (Ed.), Carbohydrates in Food, Marcel Dekker, New York, pp. 347-429.Google Scholar
  12. 12.
    L. Slade and H. Levine (1991), Crit. Rev. Food Sci. Nutr. 30(2,3), 115-360.Google Scholar
  13. 13.
    D. J. Burt and P. L. Russel (1983) Starch/Stärke 35, 354-360.Google Scholar
  14. 14.
    E. Grigat (1985) in G. Oertel (Ed.), Polyurethane Handbook, Hanser, New York, pp. 7-12.Google Scholar
  15. 15.
    Method 44-15A (1995) Approval Method of the AACC, 9th ed., revised 10-26-94, American Association of Cereal Chemists, St. Paul, MN.Google Scholar
  16. 16.
    D-638-91 (1983) in Annual Book of ASTM Standards, v. 8.01, American Society for Testing and Materials, Philadelphia, p. 161.Google Scholar
  17. 17.
    K. Schauerte in G. Oertel (Ed.), Polyurethane Handbook, Hanser, New York, pp. 62-73.Google Scholar
  18. 18.
    K. J. Zeleznak and R. C. Hoseney (1987) Cereal Chem. 64, 121-124.Google Scholar
  19. 19.
    T. Ke and X. Sun (2001) J. Appl. Polym. Sci. 82, 3069-3082. 20. W. Zhong, J. Ge, Z. Gu, W. Li, X. Chen, Y. Zang, and Y. Yang (1999) J. Appl. Polym. Sci. 74, 2546-2551.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Department of Grain Science and IndustryKansas State UniversityManhattan

Personalised recommendations