Minds and Machines

, Volume 12, Issue 4, pp 503–517

Incompleteness, Complexity, Randomness and Beyond

  • Cristian S. Calude
Article

Abstract

Gödel's Incompleteness Theorems have the same scientific status as Einstein's principle of relativity, Heisenberg's uncertainty principle, and Watson and Crick's double helix model of DNA. Our aim is to discuss some new faces of the incompleteness phenomenon unveiled by an information-theoretic approach to randomness and recent developments in quantum computing.

complexity incompleteness Omega Number quantum computing randomness Turing barrier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auburn, D. (2001), Proof.A Play, New York: Faber & Faber.Google Scholar
  2. Barrow, J.D. (1998), Impossibility: The Limits of Science and the Science of Limits, Oxford: Oxford University Press.Google Scholar
  3. Barrow, J.D. (2000), ‘Mathematical Jujitsu: Some Informal Thoughts About Gödel and Physics’, Complexity 5, pp. 28–34.Google Scholar
  4. Becher, V., Daicz, S. and Chaitin, G.J. (2001), ‘A Highly Random Number’, in C.S. Calude, M. J. Dinneen and S. Sburlan, eds., Combinatorics, Computability and Logic, Proceedings of DMTCS'01, London: Springer, pp. 55–68.Google Scholar
  5. Beltrami, E. (1999), What is Random? Chance and Order in Mathematics and Life, New York: Springer.Google Scholar
  6. Bennett, C.H. and Gardner, M. (1979), ‘The Random Number Omega Bids Fair to Hold the Mysteries of the Universe’, Scientific American 241, pp. 20–34.Google Scholar
  7. Brisson, L. and Meyerstein, L.F. (1995), Puissance et Limites de la Raison, Paris: Les Belles Lettres.Google Scholar
  8. Calude, C. S. (2002), Information and Randomness.An Algorithmic Perspective, Berlin: Springer.Google Scholar
  9. Calude, C.S. (2000), ‘A Glimpse into Algorithmic Information Theory’, in P. Blackburn, N. Braisby, L. Cavedon and A. Shimojima, eds., Logic, Language and Computation, Volume 3, CSLI Series, Cambridge: Cambridge University Press, pp. 65–81.Google Scholar
  10. Calude, C.S. (2002), ‘Chaitin Ω ΩNumbers, SolovayMachines and Incompleteness’, Theoret.Comput.Sci. 28, pp. 269–277.Google Scholar
  11. Calude, C.S. and Chaitin, G.J. (1999), ‘Randomness Everywhere’, Nature 400, pp. 319–320.Google Scholar
  12. Calude, C.S., Dinneen, M.J. and C.-K. Shu, C.-K. (2002), ‘Computing a Glimpse of Randomness’, Experimental Mathematics; see also CDMTCS Research Report 167, 2001, 12 pp.Google Scholar
  13. Calude, C.S., Dinneen, M.J. and Svozil, K. (1999), ‘Counterfactual Effect, the Halting Problem, and the Busy Beaver Function’ (Preliminary Version), CDMTCS Research Report 107, 8 pp.Google Scholar
  14. Calude, C.S., Dinneen, M.J. and Svozil, K. (2000), ‘Reflections on Quantum Computing’, Complexity 6, pp. 35–37.Google Scholar
  15. Calude, C.S., Hertling, P., Khoussainov, B. and Wang, Y. (2001), 'Recursively Enumerable Reals and Chaitin Ω ΩNumbers’, Theoret.Comput.Sci. 255 pp. 125–149.Google Scholar
  16. Calude, C. and Jürgensen, H. (1994), ‘Randomness as an Invariant for Number Representations’, in H. Maurer, J. Karhumäki and G. Rozenberg, eds. Results and Trends in Theoretical Computer Science, Berlin: Springer, pp. 44–66.Google Scholar
  17. Calude, C., Jürgensen, H. and Zimand, M. (1994), ‘Is Independence an Exception ?’, Appl.Math.Comput. 66, pp. 63–76.Google Scholar
  18. Calude, C.S. and Meyerstein, F.W. (1999), ‘Is the Universe Lawful ?’, Chaos, Solitons & Fractals 10, pp. 1075–1084.Google Scholar
  19. Calude, C. and Nies, A. (1997), ‘Chaitin Ω ΩNumbers and Strong Reducibilities’, J.Univ.Comput.Sci. 3, pp. 1161–1166.Google Scholar
  20. Calude, C.S. and Pavlov, B. (2002), ‘Coins, QuantumMeasurements, and Turing's Barrier’, Quantum Information Processing 1(1-2), pp. 107–127.Google Scholar
  21. Calude, C.S. and Păun, G. (2001), Computing with Cells and Atoms, London: Taylor & Francis Publishers.Google Scholar
  22. Calude, C. and Salomaa, A. (1994), ‘Algorithmically Coding the Universe’, in G. Rozenberg and A. Salomaa, eds. Developments in Language Theory, Singapore: World Scientific, pp. 472–492.Google Scholar
  23. Casti, J. (1997), ‘Computing the Uncomputable’, The New Scientist, 154/2082, p. 34.Google Scholar
  24. Casti, J. (2000), Five More Golden Rules: Knots, Codes, Chaos, and Other Great Theories of 20th-Century Mathematics, New York: Wiley.Google Scholar
  25. Casti, J. and DePauli, W. (2000), Gödel.A Life in Logic, Cambridge: Perseus.Google Scholar
  26. Chaitin, G.J. (1966), ‘On the Length of Programs for Computing Finite Binary Sequences’, J.Assoc.Comput.Mach. 13, pp. 547–569. (Reprinted in: Chaitin (1990), pp. 219–244.)Google Scholar
  27. Chaitin, G.J. (1975), ‘A Theory of Program Size Formally Identical to Information Theory’, J.Assoc.Comput.Mach. 22, pp. 329–340. (Reprinted in: Chaitin (1990), pp. 113–128)Google Scholar
  28. Chaitin, G.J. (1982), ‘Gödel's Theorem & Information’, International Journal of Theoretical Physics 22, pp. 941–954.Google Scholar
  29. Chaitin, G.J. (1990), Algorithmic Information Theory, Cambridge: Cambridge University Press (Third printing).Google Scholar
  30. Chaitin, G.J. (1990), Information, Randomness and Incompleteness, Papers on Algorithmic Information Theory, Singapore: World Scientific, Singapore (Second edition).Google Scholar
  31. Chaitin, G.J. (1992), Information-Theoretic Incompleteness, Singapore: World Scientific, Singapore.Google Scholar
  32. Chaitin, G.J. (1997), The Limits of Mathematics, Singapore: Springer.Google Scholar
  33. Chaitin, G.J. (1999), The Unknowable, Singapore: Springer.Google Scholar
  34. Chaitin, G.J. (2000), Exploring Randomness, London: Springer.Google Scholar
  35. Chaitin, G.J. (2001), Conversations with a Mathematician, London: Springer.Google Scholar
  36. Chown, M. (2001), ‘The Omega Man’, New Scientist 10 March, pp. 29–31.Google Scholar
  37. Chown, M. (2002), ‘Smash and Grab’, New Scientist 6 April, pp. 24–28.Google Scholar
  38. Collins, G. P. (2001), ‘Computing with Light’, Scientific American, Aug. p. 12.Google Scholar
  39. Copeland, J. (1999), ‘The Modern History of Computing’, in E.N. Zalta, ed. The Stanford Encyclopedia of Philosophy http://plato.stanford.edu/entries/ computing-history/.Google Scholar
  40. Copeland, J. (2000), ‘Narrow Versus Wide Mechanism: Including a Re-examination of Turing's Views on the Mind-machine Issue’, Journal of Philosophy XCVI1, pp. 5–32.Google Scholar
  41. Dawson, J.W. Jr. (1984), ‘Kurt Gödel in Sharper Focus’, The Mathematical Intelligencer6, pp. 9–17.Google Scholar
  42. Dawson, J.W. Jr. (1997), Logical Dilemmas.The Life and Work of Kurt Gödel, Massachusetts: A K Peters.Google Scholar
  43. Dembski, W. A. (1998), ‘Randomness’, in E. Craig, ed., Routledge Encyclopedia of Philosophy, Routledge, London, Vol. 8, pp. 56–59.Google Scholar
  44. Denker, M., Woyczyński, M. W. and Ycart, B. (1998), Introductory Statistics and Random Phenomena: Uncertainty, Complexity, and Chaotic Behavior in Engineering and Science, Boston: Birkhäuser.Google Scholar
  45. Detlefsen, M. (1998), ‘Gödel's Theorems’, in E. Craig, ed., Routledge Encyclopedia of Philosophy, Routledge, London, Vol. 4, pp. 106–119.Google Scholar
  46. Deutsch, D. (1985), ‘Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer’, Proceedings of the Royal Society London A 400, pp. 97–119.Google Scholar
  47. Doxiadis, A. (2000), Uncle Petros & Goldback's Conjecture.A Novel about Mathematical Obsession, New York: Bloomsbury.Google Scholar
  48. Etesi, G. and Németi, I. (2002)., ‘Non-Turing Computations via Malament-Hogarth Space-times’, International Journal of Theoretical Physics 41, pp. 341–370.Google Scholar
  49. Feferman, S. (1984), ‘Kurt Gödel: Conviction and Caution’, Philos.Natur. 21, pp. 546–562.Google Scholar
  50. Feferman, S., Dawson, J., Jr., Kleene S.C., Moore, G.H., Solovay, R.M. and van Heijenoort, J., eds. (1990), Kurt Gödel Collected Works, Volume II, Oxford: Oxford University Press.Google Scholar
  51. Feynman, R.P. (1985), ‘Simulating Physics with Computers’, International Journal of Theoretical Physics 11, pp. 11–20.Google Scholar
  52. Hey, J.G., ed. (1999), Feynman and Computation.Exploring the Limits of Computers, Reading: Perseus Books.Google Scholar
  53. Gödel, K. (1964), ‘Russell's Mathematical Logic’, in P. Benacerref and H. Putnam, eds. Philosophy of Mathematics, Englewood Cliffs, NJ: Prentice-Hall, pp. 211–232.Google Scholar
  54. Gruska, J. (1999), Quantum Computing, London: McGraw-Hill.Google Scholar
  55. Hayes, B. (2001), ‘Randomness as a Resource’, American Scientist 89, 4 July–August, pp. 300-304.Google Scholar
  56. Hertling, P. and Weihrauch, K. (1998), ‘Randomness Spaces’, in K.G. Larsen, S. Skyum, and G. Winskel, eds. Automata, Languages and Programming, Proceedings of the 25th International Colloquium, ICALP'98 (Aalborg, Denmark), Berlin: Springer, pp. 796–807.Google Scholar
  57. Kac, M. (1983), ‘What is Random ?’, American Scientist 71, pp. 405–406.Google Scholar
  58. Kieu, T.D. (2001a), ‘Hilbert's Incompleteness, Chaitin's ΩΩ Number and Quantum Physics’, Los Alamos preprint archive http://arXiv:quant-ph/0111062, v1, 10 November.Google Scholar
  59. Kieu, T. D. (2001b), ‘Quantum Algorithm for the Hilbert's Tenth Problem’, Los Alamos preprint archive http://arXiv:quant-ph/0110136, v2, 9 November.Google Scholar
  60. Kleene, S.C. (1976), ‘The Work of Kurt Gödel’, J.Symbolic Logic 41, pp, 761–778; addendum J.Symbolic Logic 43, p. 613.Google Scholar
  61. Kolata, G. (1986), ‘What Does it Mean to be Random ?’, Science 7, pp. 1068–1070.Google Scholar
  62. Kolmogorov, A. N. (1965), ‘Three Approaches for Defining the Concept of “Information Quantity”’, Problems Inform.Transmission 1, pp. 3–11.Google Scholar
  63. Kreisel, G. (1980), ‘Kurt Gödel’, Biographical Memoirs of Fellows of the Royal Society of London 26, pp. 149–224; corrigenda 27, p. 697, 28, p. 718.Google Scholar
  64. Kučera, A. and Slaman, T.A. (2001), ‘Randomness and Recursive Enumerability’, SIAM J.Comput. 31, pp. 199–211.Google Scholar
  65. van Lambalgen, M. (1989), ‘Algorithmic Information Theory’, J.Symbolic Logic 54, pp. 1389–1400.Google Scholar
  66. Landauer, R. (1987), ‘Computation: A Fundamental Physical View’, Physica Scripta 35, pp. 88–95.Google Scholar
  67. Li, M. and Vitányi, P. M. (1997), An Introduction to Kolmogorov Complexity and Its Applications, Berlin: Springer (Second edition).Google Scholar
  68. Martin-Löf, P. (1966), Algorithms and Random Sequences, Nürnberg: Erlangen University.Google Scholar
  69. Martin-Löf, P. (1966), ‘The Definition of Random Sequences’, Inform.and Control 9, pp. 602–619.Google Scholar
  70. Marxen, H. and Buntrock, J. (1990), ‘Attaching the Busy Beaver 5’, Bull EATCS 40, pp. 247–251.Google Scholar
  71. Nagel, E. and Newman, J. R. (1986), Gödel's Proof, New York: University Press (Second printing).Google Scholar
  72. Post, E. ( 1965), ‘Absolutely Unsolvable Problems and Relatively Undecidable Propositions: Account of an Anticipation’, in M. Davis, ed., The Undecidable, New York: Raven Press, pp. 340–433.Google Scholar
  73. Raatikainen, P. (1998), ‘On Interpreting Chaitin's Incompleteness Theorem’, J.Philos.Logic 27, pp. 569–586.Google Scholar
  74. Rice, H. (1954), ‘Recursive Reals’, Proc.Amer.Math.Soc. 5, pp. 784–791.Google Scholar
  75. Rozenberg, G. and Salomaa, A. (1994), Cornerstones of Undecidability, Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  76. Rucker, R. (1982), Infinity and the Mind, New York: Bantam.Google Scholar
  77. Siegelmann, H. (1995), ‘Computation Beyond the Turing Limit’, Science 268, pp. 545–548.Google Scholar
  78. Soare, R. I. (1969), ‘Recursion Theory and Dedekind Cuts’, Trans.Amer.Math.Soc. 140, pp. 271–294.Google Scholar
  79. Solomonoff, R. J. (1964), ‘A Formal Theory of Inductive Inference’, Part 1 and Part 2, Inform.and Control 7, pp. 1–22, 224–254.Google Scholar
  80. Solovay, R. M. (1975), Draft of a paper (or series of papers) on Chaitin's work...done for the most part during the period of Sept.–Dec.1974, New York: IBM Thomas J. Watson Research Center, 215, pp.Google Scholar
  81. Solovay, R. M. (2000), ‘A Version of Ω for Which Z F C Cannot Predict a Single Bit’, in C.S. Calude and G. Păaun, eds., Finite Versus Infinite.Contributions to an Eternal Dilemma, London: Springer, pp. 323–334.Google Scholar
  82. Specker, E. (1949), Nicht konstruktiv beweisbare 'sätze der Analysis’, J.Symbolic Logic 14, pp. 145–158.Google Scholar
  83. Svozil, K. (1993), Randomness & Undecidability in Physics, Singapore: World Scientific.Google Scholar
  84. Svozil, K. (1995), ‘Halting Probability Amplitude of Quantum Computers’, J.UCS 1, pp. 201–203.Google Scholar
  85. Staiger, L. (1999), ‘The Kolmogorov Complexity of Real Numbers’, in G. Ciobanu and Gh. Păun, eds. Proc.Fundamentals of Computation Theory, Lecture Notes in Comput. Sci. No. 1684, Berlin: Springer, pp. 536-546.Google Scholar
  86. Stewart, I. (1991), ‘Deciding the Undecidable’, Nature 352, pp. 664–665.Google Scholar
  87. Turing, A. M. (1936/7), ‘On Computable Numbers with an Application to the Entscheidungsproblem’, Proc.Amer.Math.Soc. 42, pp. 230–265; a correction, 43, pp. 544–546.Google Scholar
  88. Zwirn, H. (2000), Les Limites de la Connaissance, Paris: Odile Jacob.Google Scholar
  89. Uspensky, V.A., Semenov, A. L. and Shen, A. Kh. (1990), ‘Can an Individual Sequence of Zeros and Ones be Random ?’, Russian Math.Surveys 45, pp. 121–189.Google Scholar
  90. Vitányi, P.M. (2001), ‘Quantum Kolmogorov Complexity Based on Classical Descriptions’, IEEE Trans.Inform.Theory 47, pp. 2464–2479.Google Scholar
  91. Wang, H. (1996), A Logical Journey: From Gödel to Philosophy, Cambridge: MIT Press.Google Scholar
  92. Williams, C. P. and Clearwater, S. H. (2000), Ultimate Zero and One, New York: Copernicus.Google Scholar
  93. Wittgenstein, L. (1964), ‘Selections from “Remarks on the Foundations of Mathematics”’, in P. Benacerref and H. Putnam (eds). Philosophy of Mathematics: Selected Readings, Princeton, NJ: Prentice-Hall, pp. 421–480.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Cristian S. Calude
    • 1
  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations