Journal of Applied Phycology

, Volume 14, Issue 4, pp 241–254 | Cite as

Bioassay for ichthyocidal activity of Pfiesteria piscicida: Characterization of a culture flask assay format

  • M.S. Quesenberry
  • K. Saito
  • D.N. Krupatkina
  • J.A.F. Robledo
  • T. Drgon
  • W.T. Pecher
  • N. O'Leary
  • M. Alavi
  • T. Miller
  • R.E. Schneider
  • R. Belas
  • J.R. Deeds
  • A.R. Place
  • Y. Zohar
  • G.R. Vasta
Article

Abstract

The description of the heterotrophic dinoflagellate Pfiesteriapiscicida as the causative agent of fish lesions and deaths alongthemid-Atlantic estuaries has revealed the need for bioassays to assess itspotential toxigenicity. We designed a bioassay in which fish are exposed toclonal dinoflagellate strains or environmental consortia (e.g. environmentalwater or sediment samples) in 750-mL culture flasks, and examinedthe relationships among dinoflagellate proliferation profiles, the presence ofP. piscicida and fish deaths. Assay development andcharacterization were accomplished with dinoflagellate clonal cultures(P. piscicida, Karlodinium micrum,Prorocentrum minimum, CCMP1828, CCMP1829, and CCMP1834)co-incubated with sets of two young adult sheepshead minnows(Cyprinodon variegatus). Variables characterized includedwater quality (pH, dissolved oxygen, ammonia, nitrate and nitriteconcentrations), the effect of the presence of fish on the proliferation andcompositions of protist (dinoflagellate, protozoa, diatom) and bacterialpopulations, and time of fish death. The presence of fish in experimentalflasksinduced proliferation of P. piscicida andCryptoperidiniopsis sp. (but not K.micrum or P. minimum) with populationsrising between days 6 and 10, and declining 4 to 5 days later. Some fish deathsoccurred when or soon after P. piscicida cell numberswere maximal. We conclude that this assay enables the assessment of acuteeffects of ichthyocidal dinoflagellates on fish during the first 10 days (StageA) of the experimental course. Fish deaths during the subsequent 10 to 20 days(Stage B) may be attributed to the proliferation of ichthyocidaldinoflagellates, pathogenic bacteria and/or deteriorating water quality,whereasthose beyond a period of approximately three weeks (Stage C) can be mostcertainly attributed to deteriorated water quality. Application of the flaskassay to environmental samples [n=53] yielded fish deaths in all three stages:A, 78%; B, 11%, and C, 2%, with fish still living in 9% of the sample waterstested at the conclusion of the experiment beyond three weeks. The majority ofsamples that resulted in fish death in stage A tested positive for P.piscicida by PCR. If implemented with cautious interpretation, thisassay should prove useful in monitoring blooms for the presence of P.piscicida and other dinoflagellate s pecies potentially harmful tofish.

Culture flask format Dinoflagellates Environmental isolates Fish bioassay Heterotrophic Ichthyocidal Microbial community PCR detection Pfiesteria piscicida Water quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavi M., Miller T., Erlandson K., Schneider R. and Belas R. 2001. Bacteria community associated with Pfiesteiria-like dinoflagellate cultures. Environ. Microbiol. 3: 380-396.Google Scholar
  2. Bever C.T., Grattan L. Jr and Morris J.G. 1998. Neurologic symptoms following Pfiesteria exposure: case report and literature review. MD Med. J. 47: 120-123.Google Scholar
  3. Burkholder J.M., Noga E.J., Hobbs C.H. and Glasgow H.B. Jr 1992. New' phantom' dinoflagellate is the causative agent of major estuarine fish kills. Nature 358: 407-410.Google Scholar
  4. Clean Water Commission, Department of Natural Resources 2001. Water Quality, in Missouri State Code of Regulations. Document 10 CSR 20-7. Office of Secretary of State, Jefferson City, MO, USA, p. 135.Google Scholar
  5. Glasgow W.B., Burkholder J.M. Jr, Morton S. and Springer J. 2000. A new species of toxic Pfiesteria. In: Conference Proceedings: International Conference on Harmful Algal Blooms, Tasmania, Australia. (Abstract, p. 19).Google Scholar
  6. Grattan L.M., Oldach D., Perl T.M., Lowitt M.H., Matuszak D.L., Dickson C. et al. 1998. Learning and memory difficulties after environmental exposure to waterways. Lancet 352: 532-539.Google Scholar
  7. Guillard R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W.L. and Chanley M.H. (eds), Culture of Marine Invertebrate Animals. Plenum Press, New York, pp.26-60.Google Scholar
  8. Harvell C.D., Kim K., Burkholder J.M., Colwell R.R., Epstein P.R., Grimes D.J. et al. 1999. Emerging marine diseases-climate links and anthropogenic factors. Science 285: 1505-1510.Google Scholar
  9. Kane A.S., Oldach D. and Reimschuessel R. 1998. Fish lesions in the Chesapeake Bay: Pfiesteria-like dinoflagellates and other etiologies. MD Med. J. 47: 106-112.Google Scholar
  10. Lányi B. 1987. Classical and rapid identification methods for medically important bacteria. In: Colwell R.R. and Grigorova R. (eds), Methods in Microbiology. Vol. 19. Academic Press Ltd, Orlando, FL, USA.Google Scholar
  11. Matuszak D.L., Taylor J.L., Dickson C. and Benjamin G.C. 1998. Toxic-Pfiesteria-surveillance for human disease in Maryland. MD Med. J. 47: 144-147.Google Scholar
  12. Miller D.C., Poucher S., Cardin J.A. and Hansen D. 1990. The acute and chronic toxicity of ammonia to marine fish and a mysid. Arch. environ. Contam. Toxicol. 19: 40-48.Google Scholar
  13. Robledo J.A.F., Pecher W.T. and Vasta G.R. 2000b. High-throughput isolation of oyster DNA facilitates diagnosis of “Dermo” disease. Qiagen News 5: 15-17.Google Scholar
  14. Robledo J.A.F., Saito K., Coats D.W., Steidinger K.A. and Vasta G.R. 2000a. The non-transcribed spacer of the rRNA locus as a target for specific detection of the dinoflagellate Pfiesteria piscicida and protistan parasites (Perkinsus spp.). In: Ninth International Conference on Harmful Algal Blooms. Interbovernmental Oceanographic commission of UNESCO, Hobart Australia, 7-11 February 2000., pp. 238-241.Google Scholar
  15. Speare D.J. and MacNair N. 1996. Effects of intermittent exposure to therapeutic levels of formalin on growth characteristics and body condition of juvenile rainbow trout. J. aquat. Anim. Health 8: 58-63.Google Scholar
  16. Steidinger K.A., Burkholder J.M., Glasgow H.B., Hobbs C.W. Jr, Garrett J.K., Truby E.W. et al. 1996. Pfiesteria piscicida gen. et sp. nov. (Pfiesteriaceae fam. nov.), a new toxic dinoflagellate with a complex life cycle and behavior. J. Phycol. 32: 157-164.Google Scholar
  17. Stoecker D.K., Stevens K. and Gustafson D.E. 2000. Potential predation on Pfiesteria piscicida. In: Conference Proceedings: International Conference on Harmful Algal Blooms, Tasmania, Australia, (Abstract, p. 59).Google Scholar
  18. Wedemeyer G.A. 1996. Physiology of Fish in Intensive Culture Systems. Chapman and Hall, New York, 232 p.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M.S. Quesenberry
    • 1
  • K. Saito
    • 1
  • D.N. Krupatkina
    • 1
  • J.A.F. Robledo
    • 1
  • T. Drgon
    • 1
  • W.T. Pecher
    • 1
  • N. O'Leary
    • 1
  • M. Alavi
    • 1
  • T. Miller
    • 1
  • R.E. Schneider
    • 1
  • R. Belas
    • 1
  • J.R. Deeds
    • 1
  • A.R. Place
    • 1
  • Y. Zohar
    • 1
  • G.R. Vasta
    • 1
  1. 1.Center of Marine BiotechnologyUniversity of Maryland Biotechnology InstituteBaltimoreUSA

Personalised recommendations