Advertisement

Journal of Cluster Science

, Volume 13, Issue 4, pp 503–520 | Cite as

Synthesis and Reactivity of Amidoaluminum Hydride Compounds as Potential Precursors to AlN

  • Michael C. Hodgson
  • Masood A. Khan
  • Rudolf J. Wehmschulte
Article

Abstract

A new series of amidoaluminum hydride complexes H n Al[N(SiHMe2)2]3−n⋅NMe3 (1, n=2; 2, n=1), Al[N(SiHMe2)2]3 (3), and [H2AlN(SiHMe2)2]2 (4) were prepared by the metallation of tetramethyldisilazane (Me2HSi)2NH with either H3Al⋅NMe3 or H3Al⋅2OEt2. The molecular structures of 1 and 2 were shown by X-ray crystal structure determination to be monomeric Lewis acid-base adducts with four coordinate aluminum centers and terminal amido groups. The molecular structure of 4 was found to be a dimer with bridging disilylamides in the solid state. Attempts to obtain crystals of [H2AlN(SiMe3)2]2, a bulkier analogue of 4, led to the isolation of the unusual alumoxane μ2-(Me3Si)2 N-(AlH2)2-μ3-O-Al(H)N(SiMe3)2⋅OEt2 (6) in moderate yields. Thermolysis of 1 and 2 resulted only in the formation of ligand exchange and decomposition products, whereas thermolysis of 4 at 80°C afforded 1 equivalent of Me2SiH2 and a new species formulated as the imide complex [HAlNSiMe2H] n (7). Thermolysis of 4 in the presence of AlH3⋅NMe3 gave Me2SiH2 and 7 at a higher reaction rate even at a lower temperature.

aluminum nitride alane amide hydride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. I. Gersten, The Physics and Chemistry of Materials (Wiley, New York, 2001).Google Scholar
  2. 2.
    A. C. Jones and P. O'Brien, CVD of Compound Semiconductors: Precursor Synthesis, Development and Applications (VCH, Weinheim, New York, 1997).Google Scholar
  3. 3.
    F. C. Sauls, L. V. Interrante, S. N. Shaikh, L. Carpenter, Jr., and W. L. Gladfelter (1995). Inorg. Synth. 30, 46–50.Google Scholar
  4. 4.
    J. A. Haber, P. C. Gibbons, and W. E. Buhro (1998). Chem. Mater. 10, 4062–4071.Google Scholar
  5. 5.
    R. J. Wehmschulte and P. P. Power (1997). J. Am. Chem. Soc. 119, 9566–9567.Google Scholar
  6. 6.
    C. B. Murray, D. J. Norris, and M. G. Bawendi (1993). J. Am. Chem. Soc. 115, 8706–8715.Google Scholar
  7. 7.
    T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Chiang, A. M. Beatty, P. C. Gibbons, and W. E. Buhro (1997). J. Am. Chem. Soc. 119, 2172–2181.Google Scholar
  8. 8.
    R. L. Wells and W. L. Gladfelter (1997). J. Cluster Sci. 8, 217–238.Google Scholar
  9. 9.
    X. Peng, J. Wickham, and A. P. Alivisatos (1998). J. Am. Chem. Soc. 120, 5343–5344.Google Scholar
  10. 10.
    K. J. L. Paciorek, J. H. Nakahara, and S. R. Masuda (1990). Inorg. Chem. 29, 4252–4255.Google Scholar
  11. 11.
    M. G. Gardiner, G. A. Koutsantonis, S. M. Lawrence, F.-C. Lee, and C. L. Raston (1996). Chem. Ber. 129, 545–549.Google Scholar
  12. 12.
    J. F. Janik, E. N. Duesler, and R. T. Paine (1997). J. Organomet. Chem. 539, 19–25.Google Scholar
  13. 13.
    U. Fooken, M. A. Khan, and R. J. Wehmschulte (2001). Inorg. Chem. 40, 1316–1322.Google Scholar
  14. 14.
    C. N. McMahon, S. G. Bott, L. B. Alemany, H. W. Roesky, and A. R. Barron (1999). Organometallics 18, 5395–5408.Google Scholar
  15. 15.
    S. S. Kher and R. L. Wells (1994). Chem. Mater. 6, 2056–2062.Google Scholar
  16. 16.
    S. R. Aubuchon, A. T. McPhail, R. L. Wells, J. A. Giambra, and J. R. Bowser (1994). Chem. Mater. 6, 82–86.Google Scholar
  17. 17.
    R. L. Wells, R. B. Hallock, A. T. McPhail, C. G. Pitt, and J. D. Johansen (1991). Chem. Mater. 3, 381–382.Google Scholar
  18. 18.
    J. K. Ruff and M. F. Hawthorne (1960). J. Am. Chem. Soc. 82, 2141.Google Scholar
  19. 19.
    A. E. B. Finholt, A. C. Bond, and H. I. Schlesinger, (1947). J. Am. Chem. Soc. 69, 1199.Google Scholar
  20. 20.
    G. Gerstberger, C. Palm, and R. Anwander (1999). Chem. Eur. J. 5, 997–1005.Google Scholar
  21. 21.
    H. Hope (1995). Prog. Inorg. Chem. 41, 1–19.Google Scholar
  22. 22.
    SHELXTL; Version 5.03 (Siemens Analytical X-ray Instruments, Madison, Wisconsin, 1994).Google Scholar
  23. 23.
    M. G. Gardiner, G. A. Koutsantonis, S. M. Lawrence, and C. L. Raston (1996). Inorg. Chem. 35, 5696–5702.Google Scholar
  24. 24.
    A. Haaland, Coordination Chemistry of Aluminum (VCH, New York, 1993).Google Scholar
  25. 25.
    P. J. Brothers and P. P. Power (1996). Adv. Organomet. Chem. 39, 1–69.Google Scholar
  26. 26.
    J. J. Byers, W. T. Pennington, G. H. Robinson, and D. C. Hrncir (1990). Polyhedron 9, 2205–2210.Google Scholar
  27. 27.
    J. F. Janik, R. L. Wells, A. L. Rheingold, and I. A. Guzei (1998). Polyhedron 17, 4101–4108.Google Scholar
  28. 28.
    K. M. Waggoner and P. P. Power (1991). J. Am. Chem. Soc. 113, 3385–3393.Google Scholar
  29. 29.
    K. Ouzounis, H. Riffel, H. Hess, U. Kohler, and J. Weidlein (1983). Z. Anorg. Allg. Chem. 504, 67–76.Google Scholar
  30. 30.
    R. J. Wehmschulte and P. P. Power (2000). Polyhedron 19, 1649–1661.Google Scholar
  31. 31.
    H. Noeth and T. Seifert (1998). Eur. J. Inorg. Chem. 1931–1938.Google Scholar
  32. 32.
    D. C. Bradley, I. S. Harding, I. A. Maia, and M. Motevalli (1997). J. Chem. Soc., Dalton Trans. 2969–2979.Google Scholar
  33. 33.
    J. L. Atwood and M. J. Zaworotko (1983). J. Chem. Soc., Chem. Commun. 302–303.Google Scholar
  34. 34.
    M. R. Mason, J. M. Smith, S. G. Bott, and A. R. Barron (1993). J. Am. Chem. Soc. 115, 4971–4984.Google Scholar
  35. 35.
    S. I. Troyanov, V. B. Rybakov, and M. A. Zakharov (1997). Russ. J. Coord. Chem. (Transl. of Koord. Khim.) 23, 836–843.Google Scholar
  36. 36.
    M. Veith and P. Spaniol (1998). Z. Anorg. Allg. Chem. 624, 1891–1895.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Michael C. Hodgson
    • 1
  • Masood A. Khan
    • 1
  • Rudolf J. Wehmschulte
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of OklahomaNorman

Personalised recommendations