Advertisement

Journal of Polymers and the Environment

, Volume 10, Issue 3, pp 93–104 | Cite as

Microwave-Assisted Solvent-Free or Aqueous-Based Synthesis of Biodegradable Polymers

  • Balint KoroskenyiEmail author
  • Stephen P. McCarthy
Article

Abstract

Microwave radiation was used as the energy source for various types of chemical derivatizations of polysaccharides and for the synthesis of biodegradable polyesters in solvent-free or aqueous-based reaction systems. A medium to high degree of substitution was obtained for starch acetates, starch succinates, carboxymethyl konjac, aminated starch, and aminated chitosan. Ring-opening polymerization of lactide and ε-caprolactone proceeded rapidly even at low power output in the presence of tin octanoate catalyst. Complete monomer conversion and high molecular weight were achieved in less than 6 minutes under nonisothermal conditions. The yield rapidly increased with increasing power output and showed no significant change in a wide range of batch sizes. Polycaprolactone was successfully grafted from starch and konjac acetate in 3 minutes, yielding as high as 24% grafting efficiency and 25% grafting degree.

Microwave polyester polysaccharide synthesis derivatization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. N. Gedye, F. E. Smith, and K. C. Westaway, (1988) Can. J. Chem. 66, 17.Google Scholar
  2. 2.
    G. Majetich, and R. Hicks, (1995) Radiat. Phys. Chem. 45(4), 567.Google Scholar
  3. 3.
    S.-T. Chen, S.-H. Chiou, and K.-T. Wang, (1990) J. Chem. Soc., Chem. Commun. 807.Google Scholar
  4. 4.
    A. Loupy, A. Petit, M. Ramdani, and C. Yvanaeff, (1993) Can. J. Chem. 71, 90.Google Scholar
  5. 5.
    G. Lewandowicz, J. Fornal, A. Walkowski, M. Maczynski, G. Urbaniak, and G. Szymanska, (2000) Ind. Crops Prod. 11(2-3), 249.Google Scholar
  6. 6.
    C. Gourson, R. Benhaddou, R. Granet, P. Krausz, L. Saulnier, and J.-F. Thibault, (1999) C. R. Acad. Sci., Ser. Iic: Chim. 2(2), 75.Google Scholar
  7. 7.
    Anon. Res. Discl. (1988), 294.Google Scholar
  8. 8.
    P. Maneesriraj, S. Phetkoa, W. Narkrugsa, and J. Kasetsart, (1998) Nat. Sci. 32(2), 234.Google Scholar
  9. 9.
    M. Sikora, P. Tomasik, and K. Pielichowski, (1997) Pol. J. Nutr. Sci. 6(3), 25.Google Scholar
  10. 10.
    M. Sikora, P. Tomasik, and K. Pielichowski, (1997) Pol. Food Nutr. Sci. 6(2), 23.Google Scholar
  11. 11.
    Z. Liu, (1998) Huaxue Fanying Gongcheng Yu Gongyi 14(3), 243.Google Scholar
  12. 12.
    Y. Zhang, (1998) CN 1227847.Google Scholar
  13. 13.
    Y. Luo, X. Zheng, Z. Chen, and C. Zheng, (1999) Huaxue Yanjiu Yu Yingyong 11(6), 687.Google Scholar
  14. 14.
    X.-X. Zheng, Y.-B. Luo, Z.-F. Chen, and C.-Y. Zheng, (2000) Shiyou Huagong 29(1), 19.Google Scholar
  15. 15.
    M. Huang and M. Chen, (1999) Huaxue Shijie 40(8), 426.Google Scholar
  16. 16.
    H.-M. Yu, S.-T. Chen, P. Suree, R. Nuansri, and K.-T. Wang, (1996) J. Org. Chem. 61(26), 9608.Google Scholar
  17. 17.
    D. V. Nekrasov, T. P. Tsedrik, and V. S. Boltovskii, (1995) Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk 3, 54.Google Scholar
  18. 18.
    A. R. Khan, R. J. Robinson, and J. A. Johnson, (1980) J. Food Sci. 45(5), 1449.Google Scholar
  19. 19.
    J. Azuma, T. Tomiya, and T. Katada, (1989) J.P. 01225601.Google Scholar
  20. 20.
    A. R. Khan, J. A. Johnson, and R. I. Robinson (1979) Cereal Chem. 56(4), 303.Google Scholar
  21. 21.
    D. V. Nekrasov, O. I. Fedorova, T. P. Tsedrik, and V. S. Boltovskii, (1995) Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk 2, 57.Google Scholar
  22. 22.
    C. Muzimbaranda, P. Tomasik, and Z. Harare, (1994) Starch/Staerke 46(12), 469.Google Scholar
  23. 23.
    P. Verberne and T. Vlot, (1976) GB 1425624.Google Scholar
  24. 24.
    W. J. Brickman, (1972) DE 2204442.Google Scholar
  25. 25.
    M. Yalpani (1997) Book of Abstracts, 213th ACS National Meeting, San Francisco, April 13-17, CELL-133.Google Scholar
  26. 26.
    M. Yalpani, (1993) Front. Biomed. Biotechnol. 1(CARBOHYDRATES AND CARBOHYDRATE POLYMERS), 246Google Scholar
  27. 27.
    A. Kawasaki, H. Yamaguchi, T. Kato, and M. Nishama (1993) JP 05339300.Google Scholar
  28. 28.
    M. Yalpani (1995) Polym. Mater. Sci. Eng. 72, 46.Google Scholar
  29. 29.
    R. Maue and F. Moll, (1989) Dtsch. Apoth. Ztg. 129(20), 1035.Google Scholar
  30. 30.
    P. Albert, H. Warth, and R. Mülhaupt (1996) Macromol. Chem. Phys. 197, 1633.Google Scholar
  31. 31.
    X. Fang, R. Hutcheon, and D. A. Scola, (2000) J. Polym. Sci.: Part A: Polym Chem. 38, 1379.Google Scholar
  32. 32.
    B. Laignel, C. Bliard, G. Massiot, and J. M. Nuzzilard, (1997) Carbohydr. Res. 298, 251.Google Scholar
  33. 33.
    F. Liu, Y. Li, W. Xu, and Y. Song, (1993) Chem. Res. Chin. Univ. 9(2), 168.Google Scholar
  34. 34.
    D. B. Solarek, (1986) in O. B. Wurzburg, (Ed.), Modified Starches: Properties and Uses, CRC Press, Boca Raton, Florida, p. 113.Google Scholar
  35. 35.
    M. Nichifor, D. G. Mocanu, and A. Carpov, (1998) J. Biomater. Sci. Polymer Ed. 9(6), 519.Google Scholar
  36. 36.
    L. F. V. Burgh, (1970) Pulp & Paper Mag. Can. 71, 136.Google Scholar
  37. 37.
    E. F. Paschall, (1959) US Patent 2,876,217.Google Scholar
  38. 38.
    E. F. Paschall, (1961) US Patent 2,995,513.Google Scholar
  39. 39.
    R. D. Harvey, (1986) US Patent 4,579,944.Google Scholar
  40. 40.
    D. L. Roerden and C. D. Wessels, (1993) US Patent 5,241,061.Google Scholar
  41. 41.
    H. S. Seong, and S. W. Ko, (1998) J. Soc. Dyers Colour. 114(4), 124.Google Scholar
  42. 42.
    Unpublished results.Google Scholar
  43. 43.
    A. Kowalski, A. Duda, and S. Penczek, (1998) Macromol. Rapid Commun. 1, 567.Google Scholar
  44. 44.
    H. R. Kricheldorf, I. Kreiser-Saunders, and A. Stricker, (2000) Macromolecules 33(3), 702.Google Scholar
  45. 45.
    G. Rafler and J. Dahlmann, (1992) Acta Polymer. 43, 91.Google Scholar
  46. 46.
    E.-J. Choi, C.-H. Kim, and J.-K. Park, (1999) Macromolecules 32, 7402.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.NSF Biodegradable Polymer Research Center, Department of Plastics EngineeringUniversity of Massachusetts, LowellLowell

Personalised recommendations