Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 41, Issue 7–8, pp 382–390 | Cite as

Synthesis of Alloy Ti ― 6Al ― 4V with Low Residual Porosity by a Powder Metallurgy Method

  • Orest M. Ivasishin
  • Dmitrii G. Savvakin
  • Francis H. (Sam) Froes
  • Kseniya A. Bondareva
Article

Abstract

The possibility of producing titanium alloy Ti ― 6Al ― 4V with minimal residual porosity from mixtures of elemental powders by the method of pressing and sintering without hot deformation during or after sintering was investigated. Various powder mixtures based on titanium and titanium hydride with alloying additions of either elemental powders having different particle sizes, or master alloys, were studied. It was shown that the synthesis of Ti ― 6Al ― 4V from mixtures of titanium hydride and master alloys is optimal with respect to the attainment of high relative density. In this case the sintered material has density up to 99%, homogeneous microstructure with relatively small (100-120 μm) β-phase grains, and a low concentration of impurities, in particular oxygen, which provide a high level of mechanical properties σ(ten = 970 MPa, δ = 6%).

titanium titanium hydride powder blends relative density mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    F. H. Froes and D. Eylon, “Powder metallurgy of titanium alloys: Review,” in: Titanium Technology: Present Status and Future Trends, F. H. Froes, D. Eylon, and H. B. Bomberger (eds.), Titanium Development Assn., Dayton (1985), pp. 49–59.Google Scholar
  2. 2.
    S. Abkowits and D. Rowell, “Superior fatigue properties for blended elemental P/M Ti - 6Al - 4V,” J. Metals, August, 36–39 (1986).Google Scholar
  3. 3.
    M. Hagivara, Y. Kaieda, Y. Kawabe, and S. Miura, “Property enhancement of a-ß? titanium alloys by blended elemental P/M method,” Titanium '92. Science and Technology: Proc. of 7 th World Conference on Titanium (San Diego, June 29-July 2, 1992), F. H. Froes and I. L. Caplan (eds.), TMS, Warrendale (1993), pp. 887–894.Google Scholar
  4. 4.
    H. Fujii, K. Takahashi, K. Fujisawa, et al., “Low cost process of blended elemental powder metallurgy,” Titanium '95, Science and Technology, Proc. 8 th World Conf. on Titanium(Birmingham, 22–26 October, 1995), P. A. Blenkinsop, W. J. Evans, and E. M. Flower (eds.), Cambridge University Press (1996), pp. 2547–2554.Google Scholar
  5. 5.
    M. Dahms, G. Leitner, W. Poessnecker, et al., “Pore formation during reactive sintering of extruded titanium-aluminum powder mixtures,” Z. Metallk. 84, No. 5, 351–357 (1993).Google Scholar
  6. 6.
    A. Bohm and B. Kieback, “Investigation of swelling behavior of Ti-Al elemental powder mixtures during reaction sintering,” Z. Metallk. 89, No. 2, 90–95 (1998).Google Scholar
  7. 7.
    O. M. Ivasishin, V. M. Anokhin, A. N. Demidik, and D. G. Savvakin, “Microstructural features of titanium alloys manufactured by elemental powder metallurgy,” Materials Development and Processing: Proc. EUROMAT'99(Munich, September 1999), L. Schultz, D. M. Herlach, and J. V. Wood (eds.), Wiley-VCH (2000), Vol. 8, pp. 345–350.Google Scholar
  8. 8.
    O. M. Ivasishin, V. M. Anokhin, A. N. Demidik, and D. G. Savvakin, “Cost-effected blended elemental powder metallurgy of titanium alloys for transportation application,” Key Eng. Mat., 188, 55–62 (2000).Google Scholar
  9. 9.
    B. A. Kolachev, A. A. Il'yin, V. A. Lavrenko, and Yu. V. Levinskii, Hydride Systems: Handbook[in Russian], Metallurgiya, Moscow (1992).Google Scholar
  10. 10.
    O. M. Ivasishin, A. N. Demidik, and D. G. Sawakin, “Phase transformations on synthesis of titanium aluminides from TiH2 and Al powders,” Titanium '95, Science and Technology: Proc. 8 th World Conf. on Titanium(Birmingham, 22–26 October, 1995), P. A. Blenkinsop, W. J. Evans, and H. M. Flower (eds.), University Press, Cambridge (1996), pp. 440–447.Google Scholar
  11. 11.
    O. M. Ivasishin, A. N. Demidik, and D. G. Savvakin, “Use of titanium hydride for the synthesis of titanium aluminides from powder materials,” Poroshk. Metall.Nos. 9–10, 63–70 (1999).Google Scholar
  12. 12.
    P. J. Andersen, “Sintered powder titanium alloy and method of producing same,” Pat. 4432795, USAPubl. February 21 (1982).Google Scholar
  13. 13.
    C. F. Yolton and L. M. Osborn, “Tensile and fracture toughness properties of P/M Ti - 1.3Al - 8V - 5Fe and derivatives,” Titanium '92, Science and Technology: Proc. 7 th World Conference on Titanium(San Diego, June 29-July 2, 1992), F. H. Froes and I. L. Caplan (eds.), TMS, Warrendale (1993), pp. 821–828.Google Scholar
  14. 14.
    F. H. Froes, C. M. Cooke, et al., “Grain growth in blended elemental Ti - 6Al - 4V powder compacts,” Proc. 6 th World Conf. on Titanium(Cannes, 6–9 June, 1988), P. Lacombe, R. Tricot, and G. Beranger (eds.), Les Editions de Physique, Paris (1989), pp. 1161–1166.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Orest M. Ivasishin
    • 1
  • Dmitrii G. Savvakin
    • 1
  • Francis H. (Sam) Froes
    • 2
  • Kseniya A. Bondareva
    • 1
  1. 1.National Academy of Sciences of UkraineInstitute of Metal PhysicsKievUkraine
  2. 2.Institute of Materials and Advanced ProcessesUniversity of IdahoMoskowUSA

Personalised recommendations