Journal of Materials Science: Materials in Medicine

, Volume 13, Issue 12, pp 1199–1206 | Cite as

A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules

  • N. PatelEmail author
  • S. M. Best
  • W. Bonfield
  • I. R. Gibson
  • K. A. Hing
  • E. Damien
  • P. A. Revell


Phase pure hydroxyapatite (HA) and a 0.8 wt % silicon substituted hydroxyapatite (SiHA) were prepared by aqueous precipitation methods. Both HA and SiHA were processed into granules 0.5–1.0 mm in diameter and sintered at 1200 °C for 2 h. The sintered granules underwent full structural characterization, prior to implantation into the femoral condyle of New Zealand White rabbits for a period of 23 days. The results show that both the HA and SiHA granules were well accepted by the host tissue, with no presence of any inflammatory cells. New bone formation was observed directly on the surfaces and in the spaces between both HA and SiHA granular implants. The quantitative histomorphometry results indicate that the percentage of bone ingrowth for SiHA (37.5%±5.9) was significantly greater than that for phase pure HA (22.0%±6.5), in addition the percentage of bone/implant coverage was significantly greater for SiHA (59.8%±7.3) compared to HA (47.1%±3.6). These findings indicate that the early in vivo bioactivity of hydroxyapatite was significantly improved with the incorporation of silicate ions into the HA structure, making SiHA an attractive alternative to conventional HA materials for use as bone substitute ceramics.


Silicon Silicate Bone Formation Hydroxyapatite Structural Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. C. Blumenthal, F. Betts and A. S. Posner, Calcif. Tissue Res. 18 (1975) 81.Google Scholar
  2. 2.
    W. D. Armstrong and L. Singer, Clinical Orthopaedics 38 (1965) 175.Google Scholar
  3. 3.
    A. E. Sobel, M. Rockenmacher and B. Kramer, J. Biol. Chem. 235 (1960) 2502.Google Scholar
  4. 4.
    E. M. Carlisle, Science 167 (1970) 179.Google Scholar
  5. 5.
    E. M. Carlisle, Calc. Tissue Int. 33 (1981) 27.Google Scholar
  6. 6.
    K. Schwarz and D. B. Milne, Nature 239 (1972) 333.Google Scholar
  7. 7.
    L. L. Hench, J. Phys. 43 (1982) 625.Google Scholar
  8. 8.
    T. Kokubo, S. Ito, Z. T. Huang, T. Hayashi, S. Sakka, T. Kitsugi and T. Yamamuro, J. Biomed. Mater. Res. 24 (1990) 331.Google Scholar
  9. 9.
    L. L. Hench and A. E. Clarke, in “Biocompatibility of Orthopaedic Implants”, edited by D. F. Williams (CRC Press, Inc., 1982) Chapter 6.Google Scholar
  10. 10.
    L. L. Hench, J. Am. Ceram. Soc. 74 (1991) 1487.Google Scholar
  11. 11.
    A. J. Ruys, J. Aust. Ceram. Soc. 29 (1993) 71.Google Scholar
  12. 12.
    K. Sugiyama, T. Suzuki and T. Satoh, J. Antibact. Antifung. Agents 23 (1995) 67.Google Scholar
  13. 13.
    Y. Tanizawa and T. Suzuki, Phosphorus Res. Bull. 4 (1994) 83.Google Scholar
  14. 14.
    I. R. Gibson, S. M. Best and W. Bonfield, J. Biomed. Mater. Res. 44 (1999) 422.Google Scholar
  15. 15.
    I. R. Gibson, J. Huang, S. M. Best and W. Bonfield, in “Proceedings of the 12th International Symposium on Ceramics in Medicine, Nara, Japan, October 1999”, edited by H. Oghushi, G. W. Hastings and T. Yoshikawa (World Scientific Publishing Co., Singapure, 1999) p. 191.Google Scholar
  16. 16.
    M. Akao, H. Aoki and K. Kato, J. Mater. Sci. 28 (1981) 809.Google Scholar
  17. 17.
    M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay and R. H. Doremus, ibid. 11 (1976) 2027.Google Scholar
  18. 18.
    N. Patel, I. R. Gibson, S. Ke, S. M. Best and W. Bonfield, J. Mater. Sci. Mater. in Med. 12 (2001) 181.Google Scholar
  19. 19.
    PDF card no. 09-0432, ICDD, Newton Square, Pennsylvania, USA.Google Scholar
  20. 20.
    E. R. Weibel and H. E. Elias, in “Quantitative methods in morphology” (Springer-Verlag, Berlin, 1967).Google Scholar
  21. 21.
    W. A. Merz and R. K. Schenk, Acta. Anat. 76 (1970) 1.Google Scholar
  22. 22.
    K. A. Hing, J. C. Merry, I. R. Gibson, L. Di Silvio, S. M. Best and W. Bonfield, in “Proceedings of the 12th International Symposium on Ceramics in Medicine, Nara, Japan, October 1999”, edited by H. Oghushi, G. W. Hastings and T. Yoshikawa (World Scientific Publishing Co. Singapure) p. 195.Google Scholar
  23. 23.
    T. J. Webster, C. Ergun, R. H. Doremus and R. Bizios, J. Biomed. Mater. Res. 59 (2002) 312.Google Scholar
  24. 24.
    H. Oonishi, L. L. Hench, J. Wilson, F. Sugihara, E. Tsuji, S. Kushitani and H. Iwaki, ibid. 44 (1999) 31.Google Scholar
  25. 25.
    N. Ikeda, K. Kawanabe and T. Nakamura, Biomaterials 20 (1999) 1087.Google Scholar
  26. 26.
    J. D. De Bruijn, Y. P. Bovell, J. E. Davies and C. A. Van Blitterswijk, J. Biomed. Mater. Res. 28 (1994) 105.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • N. Patel
    • 1
    Email author
  • S. M. Best
    • 1
  • W. Bonfield
    • 1
  • I. R. Gibson
    • 2
  • K. A. Hing
    • 2
  • E. Damien
    • 3
  • P. A. Revell
    • 3
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridge
  2. 2.IRC Biomedical MaterialsQueen Mary University of LondonLondonUK
  3. 3.IRC Biomedical MaterialsRoyal Free and University College Medical SchoolLondonUK

Personalised recommendations