Advertisement

Journal of Materials Science

, Volume 37, Issue 23, pp 4947–4971 | Cite as

Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics

  • M. H. Bocanegra-Bernal
  • S. Díaz de la Torre
Article

Abstract

Because of its outstanding mechanical properties, zirconia-based ceramics are considered as some of the best potential materials within the engineering ceramics field that might be widely used to substitute various metallic parts and specific alloys. Taking into account the transformation toughening mechanisms that operates in their microstructure, important properties can be obtained. Phase transitions as well as transformation toughening in ZrO2 are reviewed briefly with the purpose to understand its effects in some composites and glass systems. Zirconia ceramics as high toughness materials for cutting tool, metal forming applications, mechanically superior ceramics called partially stabilised zirconia (PSZ), solid electrolytes, have been fabricated using the martensitic nature of the tetragonal to monoclinic phase transition.

Keywords

Zirconia Phase Transition Solid Electrolyte Monoclinic Phase Glass System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Negita, Acta Metall. 37(1) (1989) 313.Google Scholar
  2. 2.
    Technical Support Team Standford Materials Company, San Mateo, California, 1999.Google Scholar
  3. 3.
    J. S. Hong, S. D. De La Torre, L. Gao, K. Miyamoto and H. Miyamoto, J. Mater. Sci. Lett. 17 (1998) 1313.Google Scholar
  4. 4.
    F. L. Riley, in Proceedings of II World Basque Congress, Bilbao, December 1987, edited by Servicio Central de Publicaciones del Gobierno Vasco, Spain, p. 271.Google Scholar
  5. 5.
    K. Negita and H. Takao, J. Phys. Chem. Solids 50(3) (1989) 325.Google Scholar
  6. 6.
    T. H. Etsell and S. N. Flengas, Chem. Rev. 70 (1970) 339.Google Scholar
  7. 7.
    P. Tassot, La Revue de Metallurgie, CIT, Janvier (1988) 81.Google Scholar
  8. 8.
    A. H. Heuer and M. Ruhle, Adv. In Phys.Vol. 12, edited by N. Claussen and A. H. Heuer (American Ceramic Society, 1984) p. 9.Google Scholar
  9. 9.
    H. Heuer, R. Chaim and V. Lanteri, Acta Metall. 35 (1987) 661.Google Scholar
  10. 10.
    E. C. Subbarao, H. S. Maiti and K. K. Srivastava, Phys. Status Solidi (a) 21 (1974) 9.Google Scholar
  11. 11.
    G. Teufer, Acta Crystallogr. 15 (1962) 1187.Google Scholar
  12. 12.
    M. Kato and M. Shibata-Yanagisawa, J. Mater. Sci. 25 (1990) 194.Google Scholar
  13. 13.
    G. M. Wolten, J. Amer. Ceram. Soc. 46 (1963) 418.Google Scholar
  14. 14.
    S. P. S. Badwal, J. Mater. Sci. 18 (1983) 3230.Google Scholar
  15. 15.
    N. Claussen and M. Ruhle, Adv. Sci. Ceram. 3 (1981) 137.Google Scholar
  16. 16.
    Y. Cheng and D. P. Thompson, J. Mater. Sci. Lett. 9 (1990) 24Google Scholar
  17. 17.
    I. W. Chen and Y. H. Chiao, Adv. Ceram. 12 (1984) 14.Google Scholar
  18. 18.
    B. C. Muddle and R. H. J. Hannik, J. Amer. Ceram. Soc. 69 (1986) 547.Google Scholar
  19. 19.
    D. K. Smith and C. F. Cline, J. Amer. Ceram. Soc. 45 (1962) 249.Google Scholar
  20. 20.
    N. Claussen, in “Advances in Ceramics,” Vol. 12: Science and Technology of ZrO2 (II), edited by N. Claussen, M. Rühle and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984) p. 325.Google Scholar
  21. 21.
    K. Sasaki, K. Shimura, J. Mimuranda, Y. Ikuhara and T. Sakuma, Key Eng. Mater. 171–174 (2000) 377.Google Scholar
  22. 22.
    J. Chevalier, C. Olagnon, L. Gremillard and G. Fantozzi, Key Eng. Mater. 161–163 (1999) 563.Google Scholar
  23. 23.
    B. Zhang, T. Isobe, S. Satani and H. Tsubakino, Key Eng. Mater. 161–163 (1999) 307.Google Scholar
  24. 24.
    M. F. Ashby and D. R. H. Jones, in “Engineering Materials 2: An Introduction to Microstructures, Processing and Design,” Vol. 39 (Pergamon Press, Oxford, 1986) p. 147.Google Scholar
  25. 25.
    D. W. Richerson and D. W. Freitag, in “Opportunities for Advanced Ceramics to Meet the Needs of the Industries of the Future,”Prepared by U.S. Advanced Ceramics Association and Oak Ridge National Laboratory For the Office of Industrial Technologies Energy Efficiency and Renewable Energy, U.S. Department of Energy, DOE/ORO 2076, December 1998.Google Scholar
  26. 26.
    R. C. Garvie, R. H. Hannink and R. T. Pascoe, Nature, Lond. 258 (1975) 703.Google Scholar
  27. 27.
    B. Budiansky, J. Hutchinson and J. Lambroupolos, Int. J. Solid Struct. 19 (1983) 337.Google Scholar
  28. 28.
    H. K. Bowen, Mat. Sci. Eng. 44 (1980) 1.Google Scholar
  29. 29.
    Guide to Engineered Materials, edited by Metals Progress and Advanced Materials and Processes, Metals Park, OH, 1986, p. 136.Google Scholar
  30. 30.
    R. H. J. Hannink, P. M. Kelly and B. B. Muddle, J. Amer. Ceram. Soc. 83 (2000) 461.Google Scholar
  31. 31.
    A. H. Heuer, J. Amer. Ceram. Soc. 70 (1987) 689.Google Scholar
  32. 32.
    A. G. Evans, J. Amer. Ceram. Soc. 73 (1990) 187.Google Scholar
  33. 33.
    H. D. Kirchner, R. M. Gruver, M. V. Swain and R. C. Garvie, J. Amer. Ceram. Soc. 84 (1981) 529.Google Scholar
  34. 34.
    N. Claussen and J. Jahn, J. Amer. Ceram. Soc. 61 (1978) 94.Google Scholar
  35. 35.
    W. Y. Yan, G. Reisner and F. D. Fischer, Acta Mater. 45 (1997) 1969.Google Scholar
  36. 36.
    E. Teeuw, PhD thesis, Rijksuniversiteit Groningen, 1997.Google Scholar
  37. 37.
    Y. Cheng and D. P. Thompson, Proc. Br. Ceram. Soc. 42 (1988) 149.Google Scholar
  38. 38.
    N. Claussen, J. Amer. Ceram. Soc. 59 (1976) 49.Google Scholar
  39. 39.
    R. H. Hannink and R. C. Garvie, J. Mater. Sci. 17 (1982) 2637.Google Scholar
  40. 40.
    E. Rocha, H. Balmori and S. Diaz, in Proceedings of the International Symposium on Designing, Processing and Properties of Advanced Engineering Materials, Toyohashi, Japan, JSPSAEM 156. Committee, edited by M. Umemoto and S. Kobayashi, 1997, p. 661.Google Scholar
  41. 41.
    R. H. J. Hannink and M. V. Swain, J. Aust. Ceramic Soc. 18 (1983) 53.Google Scholar
  42. 42.
    R. C. Garvie, C. Urbani, D. R. Kennedy and J. C. Mcnever, J. Mater. Sci. 19 (1984) 3224.Google Scholar
  43. 43.
    R. C. Garvie, in Second International Conference on the Science and Technology of Zirconia (Zirconia 83), Stuttgart, June 1983.Google Scholar
  44. 44.
    S. T. Gulati, J. D. Helfinstine and A. D. Davis, Bull. Amer. Ceram. Soc. 59 (1980) 211.Google Scholar
  45. 45.
    J. Drennan and R. H. J. Hannink, J. Amer. Ceram. Soc. 69 (1986) 541.Google Scholar
  46. 46.
    M. V. Swain, J. Mater. Sci. Lett. 15 (1980) 1577.Google Scholar
  47. 47.
    D. L. Porter and A. H. Heuer, J. Amer. Ceram. Soc. 62 (1979) 298.Google Scholar
  48. 48.
    R. R. Hughan and R. H. J. Hannink, J. Amer. Ceram. Soc. 69 (1986) 556.Google Scholar
  49. 49.
    R. H. J. Hannink, J. Mater. Sci. 13 (1978) 2487.Google Scholar
  50. 50.
    D. L. Porter and A. H. Heuer, J. Amer. Ceram. Soc. 60 (1977) 183.Google Scholar
  51. 51.
    R. H. J. Hannink, J. Mater. Sci. 18 (1978) 457.Google Scholar
  52. 52.
    D. J. Green, R. H. J. Hannink and M. V. Swain, in “Transformation Toughened of Ceramics” (CRC Press, Boca Raton, FL) 1989.Google Scholar
  53. 53.
    M. V. Swain, in Proceedings of the 10th Australasian Ceramic Society Conference edited by Australasian Ceramic Society (Australasian Ceramic Society, Melbourne, 1992) p. 19.Google Scholar
  54. 54.
    R. H. J. Hannink, C. J. Howard, E. H. Kisi and M. V. Swain, J. Amer. Ceram. Soc. 77 (1994) 571.Google Scholar
  55. 55.
    K. Tanaka, M. Kanari and N. Matsui, Acta Mater. 47 (1999) 2243.Google Scholar
  56. 56.
    T. Sato, S. Ohtaki, T. Endo and M. Shimada, J. Amer. Ceram. Soc. 68 (1985) 320.Google Scholar
  57. 57.
    N. Claussen, Mater. Sci. Eng. 71 (1985) 23.Google Scholar
  58. 58.
    T. Sato and M. Shimada, J. Mater. Sci. 20 (1985) 3899.Google Scholar
  59. 59.
    N. Claussen, J. Amer. Ceram. Soc. 68 (1985) 356.Google Scholar
  60. [60.
    M. Yoshimura, T. Noma, K. Kawabata and S. Somiya, J. Mater. Sci. Lett. 6 (1987) 465.Google Scholar
  61. 61.
    F. F. Lange, G. L. Dunlop and B. I. Davis, J. Amer. Ceram. Soc. 69 (1986) 237.Google Scholar
  62. 62.
    F. F. Lange, B. I. Davis and E. Wright J. Amer. Ceram. Soc. 69 (1986) 66.Google Scholar
  63. 63.
    K. Hiraga, Y. Sakka, T. S. Suzuki and K. Nakano, Key Eng. Mater. 171–174 (2000) 763.Google Scholar
  64. 64.
    S. Diaz De La Torre, H. Miyamoto, K. Miyamoto, J. Hong, L Gao, L. Tinocco-D, E. Rocha-R and H. Balmori-R, in 6th International Symposium on Ceramic Materials and Components for Engines (1997) p.892.Google Scholar
  65. 65.
    K. S. Mazdiyasni, C. T. Lynch and J. S. Smith II, J. Amer. Ceram. Soc. 50 (1967) 532.Google Scholar
  66. 66.
    E. K. Koehler and V. B. Glushkova, in “Science of Ceramics”Vol.4, edited by G. H. Stewart (British Ceramic Society, Academic Press, London, 1968) p. 33.Google Scholar
  67. 67.
    P. A. Tikhonov, A. K. Kuznetsov and E. K. Kele, Inorg. Mater. 7 (1971) 1794.Google Scholar
  68. 68.
    A. K. Kuznetsov, M. D. Krasilnikov and P. A. Tikhonov, Inorg. Mater. 8 (1972) 650.Google Scholar
  69. 69.
    M. J. Bannister and W. G. Garret, Ceram. Int. 1(3) (1975) 127.Google Scholar
  70. 70.
    N. A. Andreeva, V. M. Gropyanov and L. V. Kozlovsk I I Ceram. Int. 5 (1969) 1111.Google Scholar
  71. 71.
    C. T. Forwood and J. G. Allpress, Crystal Lattice Defects 5 (1974) 223.Google Scholar
  72. 72.
    L. Gao, Q. Liu, J. S. Hong, H. Miyamoto, S. Diaz De La Torre, A. Kakitsuji, K. Liddell and D. P. Thompson, J. Mater. Sci. 33 (1998) 1399.Google Scholar
  73. 73.
    S. Inamura, H. Miyamoto, Y. Imaida, M. Takagawa, K. Hirota and O. Yamaguchi, J. Mater. Sci. 29 (1994) 4913.Google Scholar
  74. 74.
    H. Tsubakino, R. Nozato and M. Hamamoto, J. Amer. Ceram. Soc. 74 (1991) 440.Google Scholar
  75. 75.
    H. Watanabe and M. Chigasaki, Yogyo Kyokaishi 94 (1986) 255.Google Scholar
  76. 76.
    M. Kihara, T. Ogata, K. Nakamura and K. Kobayashi, J. Jpn. Ceram. Soc. 96 (1988) 646.Google Scholar
  77. 77.
    K. K. Srivastava, R. N. Patil, C. B. Choudhary, K. V. G. K. Gokhale and E. C. Subbarao, Trans. J. Brit. Ceram. Soc. 73 (1974) 85.Google Scholar
  78. 78.
    V. S. Stubican, R. C. Hink and S. P. Ray, J. Amer. Ceram. Soc. 61 (1978) 17.Google Scholar
  79. 79.
    M. J. Bannister, J. Aust. Ceram. Soc. 18 (1982) 6.Google Scholar
  80. 80.
    W. G. Tuohig and T. Y. Tien, J. Amer. Ceram. Soc. 63 (1980) 595.Google Scholar
  81. 81.
    M. J. Bannister, W. G. Garret, K. A. Johnston, N. A. Mckinnon, R. K. STringer and H. S. Kanost, Mat. Sci. Monog. 6 (1980) 211.Google Scholar
  82. 82.
    B. H. Mussler and M. W. Shafer, Amer. Ceram. Soc. Bull. 64 (1985) 459.Google Scholar
  83. 83.
    M. A. Mccoy and A. H. Heura, J. Amer. Ceram. Soc. 71 (1988) 673.Google Scholar
  84. 84.
    Y. Cheng and D. P. Thompson, Br. Ceram. Trans. J. 87 (1988) 107.Google Scholar
  85. 85.
    Y. Ikuma, W. Komatsu and S. Yagashi, J. Mat. Sci. Lett. 4 (1985) 63.Google Scholar
  86. 86.
    G. L. Letterman and M. Tomozawa, Amer. Ceram. Soc. Bull. 65 (1986) 1370.Google Scholar
  87. 87.
    V. Dimbley and W. E. S. Turnel, J. Soc. Glass. Technol. 10 (1926) 304.Google Scholar
  88. 88.
    A. J. Majumdar and J. F. Ryder, Glass Technol. 9 (1968) 78.Google Scholar
  89. 89.
    A. F. Nelson, in “Advances in Nucleation and Crystallization in Glasses,” edited by L. L. Heach et al. (American Ceramic Society, Columbus, Ohio, 1971) p. 73.Google Scholar
  90. 90.
    H. G. Scott, J. Mater. Sci. 51 (1968) 553.Google Scholar
  91. 91.
    T. Dumas, A. Ramos, M. Gandais and J. Petiar, J. Mater. Sci. Lett. 4 (1985) 129.Google Scholar
  92. 92.
    R. B. Miller, J. L. Smialek and R. G. Garlick, Adv. Sci. Ceram. 3 (1981) 241.Google Scholar
  93. 93.
    C. A. Anderson and T. K. Gupta, Adv. Sci. Ceram. 3 (1981) 184.Google Scholar
  94. 94.
    R. J. Bratton and S. Law, in “Advances in Ceramics,” Vol. 3, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, OH, 1981) p. 226.Google Scholar
  95. 95.
    A. Paterson and R. Stevens, J. Mater. Res. 1 (1986) 295.Google Scholar
  96. 96.
    V. Lanteri, R. Chaim and A. H. Heuer, J. Amer. Ceram. Soc. 69 (1986) C258.Google Scholar
  97. 97.
    R. P. Ingel and D. Lewis, J. Amer. Ceram. Soc. 69 (1986) 325.Google Scholar
  98. 98.
    F. F. Lange, J. Mater. Sci. 17 (1982) 225.Google Scholar
  99. 99.
    T. Koyoma, S. Hayashi, A. Yasumori and K. Okada, J. Eur. Ceram. Soc. 16 (1996) 231.Google Scholar
  100. 100.
    N. Claussen, S. Wu and D. Holz, J. Eur. Ceram. Soc. 14 (1994) 97.Google Scholar
  101. 101.
    E. Rocha-rangel, H. Balmori-ramÍrez and S. Diaz de la torre, Ceram. Trans. 96 (1999) 231.Google Scholar
  102. 102.
    E. Rocha-rangel, S. Diaz de la torre, H. Miyamoto, M. Umemoto, K. Tsuchiya, J. G. CabaÑas-moreno and H. Balmori-ramÍrez, Ceram. Trans. 94 (1999) 91.Google Scholar
  103. 103.
    P. Miranzo, P. Pena, S. De aza, J. S. Moya, J. Marincon and G. Thomas, J. Mater. Sci. 22 (1987) 2987.Google Scholar
  104. 104.
    E. Di rupo, R. R. Anseau and R. J. Brook, J. Mater. Sci. 14 (1979) 2924.Google Scholar
  105. 105.
    P. Pena, P. Miranzo, J. S. Moya and S. De aza, J. Mater. Sci. 20 (1985) 2011.Google Scholar
  106. 106.
    M. F. Melo, J. S. Moya, P. Pena and S. De aza, J. Mater. Sci. 20 (1985) 2711Google Scholar
  107. 107.
    J. S. Moya, Ceram. Trans. 6 (1990) 495.Google Scholar
  108. 108.
    P. Miranzo, P. Pena, J. S. Moya and S. De aza, J. Mater. Sci. 20 (1985) 2702.Google Scholar
  109. 109.
    M. Tokita, J. Soc. Powder Tech. Japan 30 (1993) 790.Google Scholar
  110. 110.
    J. S. Moya, P. Miranzo and M. I. Osendi, Mat. Sci. Eng. A 109 (1989) 139.Google Scholar
  111. 111.
    P. Pena and S. De aza, J. Amer. Ceram. Soc. 1 (1984) C3-C5.Google Scholar
  112. 112.
    R. Pampuch, “Ceramic Materials” (Elsevier, Amsterdam, 1976) p. 147.Google Scholar
  113. 113.
    S. Moya and M. I. Osendi, J. Mater. Sci. Lett. 2 (1983) 500.Google Scholar
  114. 114.
    T. R. Dinger, K. M. Krishnan, G. Thomas, M. I. Osendi and J. S. Moya, Acta Metall. 32 (1984) 1601.Google Scholar
  115. 115.
    P. Pena, J. S. Moya, S. De aza, E. Cardinal, F. Cambier, C. Leblud and M. R. Anseau, J. Mater. Sci. Lett. 2 (1983) 772.Google Scholar
  116. 116.
    R. Dal maschio, A. Tiziani and I. Calliari, Verres Refract. 37 (1983) 369.Google Scholar
  117. 117.
    M. P. Harmer, Adv. Ceram. 10 (1984) 679.Google Scholar
  118. 118.
    R. J. Brook, Br. Ceram. Soc. 32 (1982) 7.Google Scholar
  119. 119.
    P. Pena and S. De aza, La Cerámica 30 (1977) 1.Google Scholar
  120. 120.
    P. Pena and S. De aza, Sci. Ceram. 12 (1983) 201.Google Scholar
  121. 121.
    P. Pena and S. De aza, Sci. Ceram. 9 (1977) 247.Google Scholar
  122. 122.
    P. Pena and S. De aza, J. Mater. Sci. 19 (1984) 135.Google Scholar
  123. 123.
    J. S. Moya, P. Miranzo, P. Pena and S. De aza, in Proceedings of Advanced Ceramics, edited by J. S. Moya and S. de Aza (Sociedad Española de Cerámica y Vidrio Madrid, 1986) p. 121.Google Scholar
  124. 124.
    C. Baudin and J. S. Moya, in Proceedings of International Conference on Ceramic-Ceramic Composites (Mons;Belgium, 1987).Google Scholar
  125. 125.
    C. Baudin and J. S. Moya, Sci. Ceram. 14 (1990) 831.Google Scholar
  126. 126.
    G. C. W and P. F. Becher, Amer. Ceram. Soc. Bull. 64 (1985) 298.Google Scholar
  127. 127.
    M. I. Osendi and J. S. Moya, Ceram. Eng. Sci. Proc. 8(7/8) (1987) 693.Google Scholar
  128. 128.
    S. C. Samanta and S. Musikant, Ceram. Eng. Sci. Proc. 6(7/8) (1985) 663.Google Scholar
  129. 129.
    H.-Y. Lu and S.-Y. Chen, J. Mater. Sci. 27 (1992) 4791.Google Scholar
  130. 130.
    R. C. Buchanan and D. M. Wilson, in “Advances in Ceramics,” Vol. 10: Structure and Properties of MgO and Al2O3, edited by W. D. Kingery (The American Ceramic Society Inc., Columbus, OH, 1984) p. 526.Google Scholar
  131. 131.
    K. C. Radford and R. J. Bratton, J. Mater. Sci. 14 (1979) 59.Google Scholar
  132. 132.
    Y. Nishikawa, H. Kume, S. DÍaz de la torre, S. Inamura, H. Miyamoto, T. Kato and T. Maeda, in Proceedings of 16th International Japan-Corea Seminar on Ceramics, 1999, p. 301.Google Scholar
  133. 133.
    D. W. Shin, H. Schubert and G. Petzow, in “Horizons of Powders Metallurgy Part 1,” edited by W. A. Kaysser and W. J. Huppman (Verlag Schmid, Freiburg, 1986) p. 1321.Google Scholar
  134. 134.
    J. S. Hong, S. Diaz de la torre, K. Miyamoto, H. Miyamoto and L. Gao, Mater. Lett. 37 (1998) 6.Google Scholar
  135. 135.
    J. Steeb and R. F. Pabst, Amer. Ceram. Soc. Bull. 56 (1977) 559.Google Scholar
  136. 136.
    M. RÜhle, A. G. Evans, R. M. MCmeeking, P. G. Charalambides and J. W. Hutchinson, Acta Metall. 35 (1987) 2701.Google Scholar
  137. 137.
    P. F. Becher, J. Amer. Ceram. Soc. 66 (1983) 485.Google Scholar
  138. 138.
    A. Salomoni, A. Tucci, L. Espocito and I. Stamenkovich, J. Mater. Sci. Mater. Med. 5 (1994) 651.Google Scholar
  139. 139.
    C. Piconi and G. Maccauro, Biomater. 20 (1999) 1.Google Scholar
  140. 140.
    A. G. Evans, in “Advances in Ceramics,” Vol. 12: Science and Technology of Zirconia II, edited by N. Claussen, M. Rühle and A. H. Heuer (The American Ceramic Society, Columbus, OH, 1984) p. 193.Google Scholar
  141. 141.
    R. Stevens and P. A. Evans, Br. Ceram. Trans. J. 83 (1984) 28.Google Scholar
  142. 142.
    F. F. Lange, J. Amer. Ceram. Soc. 66 (1983) 396.Google Scholar
  143. 143.
    P. F. Becher, J. Amer. Ceram. Soc. 64 (1981) 37.Google Scholar
  144. 144.
    S. Diaz de la torre, H. Kume, S. Inamura, A. Kakitsuji, Y. Nishikawa, K. Miyamoto, J. S. Hong and L. Gao, in Proceedings of International Symposium of Designing, Processing and Properties of Advanced Engineering Materials, Toyohashi, Japan, JSPS AEM 156 Committee, edited by M. Umemoto and S. Kobayashi, 1997.Google Scholar
  145. 145.
    Y.-S. Shin, Y.-W-rhee and S.-J. L. Kang, J. Amer. Ceram. Soc. 82 (1999) 1229.Google Scholar
  146. 146.
    M. I. Osendi and J. S. Moya, J. Mater. Sci. Lett. 7 (1988) 15.Google Scholar
  147. 147.
    T. Sato and M. Shimada, Amer. Ceram. Soc. Bull. 64 (1985) 1382.Google Scholar
  148. 148.
    K. Tsukuma, Amer. Ceram. Soc. Bull. 65 (1986) 1386.Google Scholar
  149. 149.
    K. Tsukuma and M. Shimada, J. Mater. Sci. 20 (1985) 1178.Google Scholar
  150. 150.
    T. W. Coyle, W. S. Coblenz and B. A. Bender, J. Amer. Ceram. Soc. 71 (1988) C88.Google Scholar
  151. 151.
    M. V. Swain, Acta Metall. 33 (1985) 2083.Google Scholar
  152. 152.
    C. Puchner, W. Kladnig and G. Gritzner, J. Mater. Sci. Lett. 9 (1990) 94.Google Scholar
  153. 153.
    R. H. J. Hannink, B. C. Muddle and M. V. Swain, in Proceedings of the Twelfth Australian Ceramics Conference, Melbourne, Australia, August 1986 (Australian Ceramic Society, Melbourne, Australia, 1986) p. 145.Google Scholar
  154. 154.
    R. H. J. Hannink and M. V. Swain, J. Amer. Ceram. Soc. 72 (1989) 90.Google Scholar
  155. 155.
    J. R. Kim and C. H. Kim, J. Mater. Sci. 25 (1990) 493.Google Scholar
  156. 156.
    A. K. Tjernlund, R. Pampe, M. HolmstrÖm and R. Carlsson, in “Special Ceramics 8” edited by S. P. Howlett and D. Taylor, 1986, p. 29.Google Scholar
  157. 157.
    R. W. Rice and W. J. MCdonough, J. Amer. Ceram. Soc. 58 (1975) 264.Google Scholar
  158. 158.
    K. Terao, J. Amer. Ceram. Soc. 71 (1988) C-167.Google Scholar
  159. 159.
    S. Dutta and B. Buzek, J. Amer. Ceram. Soc. 67 (1984) 89.Google Scholar
  160. 160.
    G. W. Babini, A. Bellosi, R. Chiara and M. Brano, Adv. Ceram. Mater. 2 (1987) 146.Google Scholar
  161. 161.
    F. F. Lange, J. Amer. Ceram. Soc. 63 (1980) 94.Google Scholar
  162. 162.
    C. P. Gazzara and D. R. Messier, Amer. Ceram. Soc. Bull. 56 (1977) 777.Google Scholar
  163. 163.
    J. R. Kim and C. H. Kim, J. Korean Ceram. Soc. 23 (1986) 67.Google Scholar
  164. 164.
    R. Ruh, K. S. Mazdiyashi, P. G. Valentine and H. O. Bielstein, J. Amer. Ceram. Soc. 67 (1984) C-190.Google Scholar
  165. 165.
    N. Claussen, R. Wagner, L. J. Gauckeler and G. Petzow, J. Amer. Ceram. Soc. 61 (1978) 369.Google Scholar
  166. 166.
    T.-J. Chung, J.-S. Lee, D.-Y. Kim, G.-H-Kim and H. Song, J. Amer. Ceram. Soc. 84 (2001) 172.Google Scholar
  167. 167.
    M. Lerch and O. RahÄuser, J. Mater. Sci. 32 (1997) 1357.Google Scholar
  168. 168.
    G. Van tendeloo and G. Thomas, Acta Metall. 31 (1983) 1619.Google Scholar
  169. 169.
    Y. Cheng and D. P. Thompson, J. Amer. Ceram. Soc. 74 (1991) 1135.Google Scholar
  170. 170.
    Y.-B. Cheng and D. P. Thompson, J. Amer. Ceram. Soc. 76 (1993) 683.Google Scholar
  171. 171.
    F. F. Lange, L. K. L. Falk and B. I. Davis, J. Mater. Res. 2 (1987) 66.Google Scholar
  172. 172.
    Y. Cheng and D. P. Thompson, in “Special Ceramics 9,” edited by R. Stevens (Publ. Inst. of Ceramics, 1992) p. 149.Google Scholar
  173. 173.
    A. H. Heuer and M. RÜhle, in “Advances in Ceramics,” Vol. 12: Science and Technology of Zirconia II, edited by N. Claussen, M. Rühle and A. H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 1.Google Scholar
  174. 174.
    L. K. L. Falk and M. HolmstrÖm, in “Euro-Ceramics,” Vol. 1, edited by G. de With, R. A. Terstra and R. Metselacer (Elsevier Barkings, Essex, UK, 1989) p. 373.Google Scholar
  175. 175.
    A. E. Zhukovskaya and V. I. Strakhov, Fiz. Khim. Tekhnol. Silik. Neorg. Mater. (1–2) (1975) 15.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. H. Bocanegra-Bernal
    • 1
  • S. Díaz de la Torre
    • 1
  1. 1.División de Materiales Ceràmicos y Beneficio de Minerales, Miguel de Cervantes #Centro de Investigación en Materiales Avanzados, CIMAV S.C.Chihuahua, ChihuahuaMéxico

Personalised recommendations