Journal of Chemical Ecology

, Volume 25, Issue 9, pp 2027–2039 | Cite as

Piperidine Alkaloids in Nitrogen Fertilized Pinus ponderosa

  • Elizabeth A. Gerson
  • Rick G. Kelsey
Article

Abstract

We fertilized individual, pole-size ponderosa pine trees at two low-quality sites and pine saplings at a relatively high-quality site, with ammonium nitrate. Six to 12 months later, we measured total %N and 2,6-disubstituted piperidine alkaloids in the foliage. The N additions raised foliar %N above deficiency levels (i.e., from 1.0–1.1% to 1.4–1.6%) at the low-quality sites, but did not elevate foliar %N in saplings at the higher quality site, where it was already (1.9%) well above critical levels. In control trees with foliar N below a threshold of 1.1%, we detected no more than trace levels of alkaloids, indicating that alkaloid production is highly constrained by N deficiency. The N additions increased mean concentrations of the predominant alkaloid, pinidine, at all three sites. Mean total alkaloid concentrations for fertilized trees at the two low-quality sites were 12 and 155 μg/g dry wt higher than controls (relative increases of 12× and 4.5×, respectively). For saplings at the high-quality site, the mean total increased by 584 μg/g dry wt (1.6×) with the N additions. Allocation of foliar N to alkaloids was highest in fertilized saplings (0.81%) compared to control saplings (0.53%). These findings demonstrate that foliar alkaloid concentrations can be increased by nitrogen fertilization of forest trees growing on both low- and high-quality sites. Fertilizing for the purpose of inhibiting potential herbivores may be more successful at higher quality sites where alkaloid levels are enhanced relative to food quality (foliar %N).

2,6-Disubstituted piperidine alkaloids Pinus ponderosa ponderosa pine fertilization nitrogen availability foliar nitrogen Pinaceae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Baldwin, I. T., and Ohnmeiss, T. E. 1994. Coordination of photosynthetic and alkaloidal responses to damage in uninducible and inducible Nicotiana sylvestris. Ecology 75:1003-1014.Google Scholar
  2. Bjorkman, C., Larsson, S., and Gref, R. 1991. Effects of nitrogen fertilization on pine needle chemistry and sawfly performance. Oecologia 86:202-209.Google Scholar
  3. Cochran, P. H. 1973. Response of individual ponderosa pine trees to fertilization. USDA Forest Service, Research Note PNW-206, 15 pp.Google Scholar
  4. Cochran, P. H. 1978. Response of a pole-size ponderosa pine stand to nitrogen, phosphorus, and sulfur. USDA Forest Service, Research Note PNW-319, 8 pp.Google Scholar
  5. Furniss, R. L., and Carolin, V. M. 1977. Western Forest Insects. USDA Forest Service, Miscellaneous Publication No. 1339.Google Scholar
  6. Gerson, E. A., and Kelsey, R. G. 1998. Variation of piperidine alkaloids in ponderosa (Pinus ponderosa) and lodgepole pine (P. contorta) foliage from central Oregon. J. Chem. Ecol. 24:815-827.Google Scholar
  7. Gerson, E. A., and Kelsey, R. G. 1999. Foliar storage and extraction methods for quantitative analysis of piperidine alkaloids from ponderosa pine (Pinus ponderosa). Phytochem. Anal. 10:1-6.Google Scholar
  8. Gleason, J. F., Duryea, M., Rose, R., and Atkinson, M. 1990. Nursery and field fertilization of 2 + 0 ponderosa pine seedlings: The effect on morphology, physiology, and field performance. Can. J. For. Res. 20:1766-1772.Google Scholar
  9. Hart, N. K., Johns, S. R., and Lamberton, J. A. 1967. (+)-9-Aza-1-methylbicyclo[3,3,1]nonan-3-one, a new alkaloid from Euphorbia atoto Forst. Aust. J. Chem. 20:561-563.Google Scholar
  10. Hoft, M., Verpoorte, R., and Beck, E. 1996. Growth and alkaloid contents in leaves of Tabernaemontana pachysiphon Stapf (Apocynaceae) as influenced by light intensity, water and nutrient supply. Oecologia 107:160-169.Google Scholar
  11. Hoft, M., Verpoorte R., and Beck, E. 1998. Leaf alkaloid contents of Tabernaemontana pachysiphon as influenced by endogenous and environmental factors in the natural habitat. Planta Med. 64:148-152.Google Scholar
  12. Johnson, N. D., Liu, B., and Bentley, B. L. 1987. The effects of nitrogen fixation, soil nitrate, and defoliation on the growth, alkaloids, and nitrogen levels of Lupinus succulentus (Fabaceae). Oecologia 74:425-431.Google Scholar
  13. Johnson, N. D., Rigney, L. P., and Bentley, B. L. 1989. Short-term induction of alkaloid production in lupines: differences between N2-fixing and nitrogen-limited plants. J. Chem. Ecol. 15:2425-2434.Google Scholar
  14. Kamm, C. D., Tawara, J. N., and Stermitz, F. R. 1998. Spruce budworm larval processing of piperidine alkaloids from spruce needles. J. Chem. Ecol. 24:1153-1160.Google Scholar
  15. Kozlowski, T. T., and Pallardy, S. G. 1997. Physiology of Woody Plants. Academic Press, San Diego.Google Scholar
  16. Krejsa, B. B., Rouquette, Jr., F. M., Holt, E. C., Camp, B. J., and Nelson, L. R. 1987. Alkaloid and nitrate concentrations in pearl millet as influenced by drought stress and fertilization with nitrogen and sulfer. Agron. J. 79:266-270.Google Scholar
  17. Leete, E., and Juneau, K. N. 1969. Biosynthesis of pinidine. J. Am. Chem. Soc. 91:5614-5618.Google Scholar
  18. Leete, E., Lechleiter, J. C., and Carver, R. A. 1975. Determination of the “starter” acetate unit in the biosynthesis of pinidine. Tetrahedron Lett. 44:3779-3782.Google Scholar
  19. Mason, R. R., Wickman, B. E., Beckwith, R. C., and Paul, H. G. 1992. Thinning and nitrogen fertilization in a grand fir stand infested with western spruce budworm. Part I: Insect response. For. Sci. 38:235-251.Google Scholar
  20. McClure, M. S. 1991. Nitrogen fertilization of hemlock increases susceptibility to hemlock woolly adelgid. J. Arbor. 17:227-229.Google Scholar
  21. McCullough, D. G., and Kulman, H. M. 1991. Effects of nitrogen fertilization on young jack pine budworm (Pinus banksiana) and on its suitability as a host for jack pine budworm (Choristoneura pinus pinus) (Lepidoptera: Tortricidae). Can. J. For. Res. 21:1447-1458.Google Scholar
  22. McMillin, J. D., and Wagner, M. R. 1989. Assessing the impacts of foliage-feeding insects on timber and scenic beauty of ponderosa pine: a methodological approach, pp. 51-59, in A. Tecle, W. W. Covington, and R. H. Hamre (eds.). Multiresource Management of Ponderosa Pine Forests. USDA Forest Service, General Technical Report RM-185.Google Scholar
  23. Oliver, W. W., and Ryker, R. A. 1990. Pinus ponderosa Dougl. ex Laws., pp. 413-424, in R. M. Burns and B. H. Honkala (eds.). Silvics of North America, Vol. 1: Conifers. USDA Forest Service, Agriculture Handbook 654.Google Scholar
  24. Powers, R. F., Webster, S. R., and Cochran, P. H. 1988. Estimating the response of ponderosa pine forests to fertilization, pp. 219-225, in W. C. Schmidt (ed.). Future Forests of the Mountain West. USDA Forest Service, General Technical Report INT-243.Google Scholar
  25. Ralphs, M. H., Manners, G. D., and Gardner, D. R. 1998. Influence of light and photosynthesis on alkaloid concentration in larkspur. J. Chem. Ecol. 24:167-182.Google Scholar
  26. SAS Institute, Inc. 1989. SAS/STAT User's Guide, Ver. 6, 4th ed., Vol. 2. Cary, North Carolina.Google Scholar
  27. Schneider, M. J., Montali, J. A., Hazen, D., and Stanton, C. E. 1991. Alkaloids of Picea. J. Nat. Prod. 54:905-909.Google Scholar
  28. Smirnoff, W. A., and Bernier, B. 1973. Increased mortality of the Swaine jack-pine sawfly, and foliar nitrogen concentrations after urea fertilization. Can. J. For. Res. 3:112-121.Google Scholar
  29. Stermitz, F. R., Tawara, J. N., Boeckl, M., Pomeroy, M., Foderaro, T. A., and Todd, F. G. 1994. Piperidine alkaloid content of Picea (spruce) and Pinus (pine). Phytochemistry 5:951-953.Google Scholar
  30. Tallent, W. H., Stromberg, V. L., and Horning, E. C. 1955. Pinus alkaloids. The alkaloids of P. sabiana Dougl. and related species. J. Am. Chem. Soc. 77:6361-6364.Google Scholar
  31. Tawara, J. N. 1994. Chemical analyses of Picea and Pinus (Pinaceae) & biosynthetic studies on Pinus ponderosa alkaloids. PhD dissertation. Colorado State University, Fort Collins.Google Scholar
  32. Tawara, J. N., Blokhin, A., Foderaro, T. A., Stermitz, F. R., and Hope, H. 1993. Toxic piperidine alkaloids from pine (Pinus) and spruce (Picea) trees. New structures and a biosynthetic hypothesis. J. Org. Chem. 58:4813-4818.Google Scholar
  33. Tawara, J. N., Stermitz, F. R., and Blokhin, A. V. 1995. Alkaloids of young ponderosa pine seedlings and late steps in the biosynthesis of pinidine. Phytochemistry 39:705-708.Google Scholar
  34. Todd, F. G. 1994. Potentially toxic compounds of Convolvulacae and piperidine alkaloids of Picea. PhD dissertation. Colorado State University, Fort Collins.Google Scholar
  35. Todd, F. G., Stermitz, F. R., and Blohkin, A. V. 1995. Piperidine alkaloid content of Picea pungens (Colorado blue spruce). Phytochemistry 40:401-406.Google Scholar
  36. Wagner, M. R. 1988. Induced defenses in ponderosa pine against defoliating insects, pp. 141-155, in W. J. Mattson, J. Levieux and C. Bernard-Dagan (eds.). Mechanisms of Woody Plant Defenses Against Insects. Springer-Verlag, New York.Google Scholar
  37. Wickman, B. E., Mason, R. R., and Paul, H. G. 1996. Ponderosa pine response to nitrogen fertilization and defoliation by the pandora moth, Coloradia pandora Blake, pp. 118-126, in W. J. Mattson, P. Niemela and M. Rousi (eds.). Dynamics of Forest Herbivory: Quest for Pattern and Principle, USDA Forest Service, General Technical Report NC-183.Google Scholar
  38. Will, G. M., and Youngberg, C. T. 1978. Sulfur status of some central Oregon soils. Soil Sci. Soc. Am. J. 42:132-134.Google Scholar
  39. Zabowski, D., and Henry, C. L. 1995. Soil and foliar nitrogen after fertiliser treatment of ponderosa pine. N.Z. J. For. Sci. 24:333-343.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Elizabeth A. Gerson
    • 1
  • Rick G. Kelsey
    • 1
  1. 1.USDA Forest Service, PNW Research StationCorvallis

Personalised recommendations