Advertisement

Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials

  • Jairo H. Lora
  • Wolfgang G. GlasserEmail author
Article

Abstract

Lignin represents a vastly under-utilized natural polymer co-generated during papermaking and biomass fractionation. Different types of lignin exist, and these differ with regard to isolation protocol and plant resource (i.e., wood type or agricultural harvesting residue). The incorporation of lignin into polymeric systems has been demonstrated, and this depends on solubility and reactivity characteristics. Several industrial utilization examples are presented for sulfur-free, water-insoluble lignins. These include materials for automotive brakes, wood panel products, biodispersants, polyurethane foams, and epoxy resins for printed circuit boards.

Lignin biopolymers adhesives biodispersants OSB polyurethane foams epoxy resins wood pulp and paper 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    W. G. Glasser (1980) in J. P. Casey, (Ed), Pulp and Paper: Chemistry and Chemical Technlogy. 3rd ed., Vol. 1, John Wiley & Sons, pp. 39–111. New York.Google Scholar
  2. 2.
    W. G. Glasser and S. S. Kelley (1987) in Encyclopedia of Polymer Science and Engineering, Vol. 8, JohnWiley & Sons, pp. 795–852. New York.Google Scholar
  3. 3.
    H. L. Chum, S. K. Parker, D. A. Feinberg, J. D. Wright, P. A. Rice, S. A. Sinclair, and W. G. Glasser (1985) SERI/TR 231–488, 1–86.Google Scholar
  4. 4.
    J. D. Gargulak and S. E. Lebo (2000) ACS Symp. Ser. No. 742, 304–320.Google Scholar
  5. 5.
    W. G. Glasser (2001) in F. C. Beall (ed.) The Encyclopedia of Materials: Science and Technology, Elsevier Science Oxford, UK.Google Scholar
  6. 6.
    W. G. Glasser, C. A. Barnett, P. C. Muller, and K. V. Sarkanen (1983) J. Agri. Food Chem. 31, 921–930.Google Scholar
  7. 7.
    W. G. Glasser, C. A. Barnett, and Y. Sano (1983) Appl. Polymer Symp. 37, 441–460.Google Scholar
  8. 8.
    W. G. Glasser (2000) ACS Symp. Ser. No. 742, 216–238.Google Scholar
  9. 9.
    J. H. Lora (2002) in T. Hu, (Ed.), Chemical Modification, Propeties, and Usage of Lignin, Kluwer Academic/Plenum Publishers, New York.Google Scholar
  10. 10.
    J. S. Gratzl and C. L. Chen (1996) Proc. Third Int. Non-Wood Fiber Pulping and Papermaking Conf. International Academic Publishers, Beijing, Suppl. Vol., pp. 15–21.Google Scholar
  11. 11.
    R. S. Wright and W. G. Glasser (1998) Biomass Bioenergy 14, 219–235.Google Scholar
  12. 12.
    M. Ibrahim and W. G. Glasser (1999) Bioresource Technol. 70, 181–192.Google Scholar
  13. 13.
    W. G. Glasser and R. C. Strickland (1987) Biomass 13, 235–254.Google Scholar
  14. 14.
    W. G. Glasser, V. Davé, and C. E. Frazier (1993) J. Wood Chem. Technol. 13, 545–559.Google Scholar
  15. 15.
    W. G. Glasser and S. Sarkanen (Eds.) (1989) ACS Symp. Ser. No. 397, 546.Google Scholar
  16. 16.
    W. G. Glasser (1989) ACS Symp. Ser. No. 385, 43–54.Google Scholar
  17. 17.
    W. G. Glasser and R. K. Jain (1993) Holzforschung 47, 225–233.Google Scholar
  18. 18.
    R. K. Jain and W. G. Glasser (1993) Holzforschung 47(3), 325–332.Google Scholar
  19. 19.
    O. H.-H. Hsu and W. G. Glasser (1975) Appl. Polymer Symp. 28, 297–307.Google Scholar
  20. 20.
    W. G. Glasser and O. H.-H. Hsu (1977) “Polyurethane intermediates and products and methods of producing same from lignin”. U.S. Patent 4,017,474; and Canadian Patent #1,097,617 (1981).Google Scholar
  21. 21.
    W. G. Glasser, W. Nieh, S. S. Kelley, and W. de Oliveira (1990) “Method of producing prepolymers from hydroxyalkyl lignin derivatives”. U.S. Patent #4,918,167.Google Scholar
  22. 22.
    W. G. Glasser, W. de Oliveira, S. S. Kelley, and L. S. Nieh (1992) “Method of producing prepolymers from hydroxyalkyl lignin derivatives”. U.S. Patent #5,102,992.Google Scholar
  23. 23.
    W. G. Glasser, O. H.-H. Hsu, D. L. Reed, R. C. Forte, and L. C.-F. Wu (1981) ACS Symp. Ser. No. 172, 311–338.Google Scholar
  24. 24.
    W. G. Glasser, L. C.-F. Wu, and J.-F. Selin (1985) in E. J. Soltes, (Ed.), Wood and Agricultural Residues: Research on Use for Feed, Fuels, and Chemicals, Academic Press, New York, 149–166.Google Scholar
  25. 25.
    S. S. Kelley, W. G. Glasser, and T. C. Ward (1989) ACS Symp. Ser. No. 397, 402–413.Google Scholar
  26. 26.
    W. Glasser, C. Barnett, T. Rials, and S. Kelley (1983) 1983 Int. Symp. Wood Pulping Chem. 3, 89–94.Google Scholar
  27. 27.
    L. C.-F. Wu and W. G. Glasser (1984) J. Appl. Polymer Sci. 29, 1111–1123.Google Scholar
  28. 28.
    W. G. Glasser, C. A. Barnett, T. G. Rials, and V. P. Saraf (1984) J. Appl. Polymer Sci. 29, 1815–1830.Google Scholar
  29. 29.
    S. S. Kelley, W. G. Glasser, and T. C. Ward (1988) J. Wood Chem. Technol. 8, 341–359.Google Scholar
  30. 30.
    W. G. Glasser, S. S. Kelley, T. G. Rials, and S. L. Ciemniecky (1986) Proc. 1986 TAPPI Res. Dev. Conf. 157–161.Google Scholar
  31. 31.
    W. G. Glasser (October 1989) in Modification of Lignin with Pro pylene Oxide, Progress Report on an Industry-University Cooperative Project, Blacksburg, VA.Google Scholar
  32. 32.
    W. G. Glasser, R. A. Northey, and T. P. Schultz (Eds) (1999) ACS Symp. Ser. No. 742, 559.Google Scholar
  33. 33.
    Nehez, N. J. “Lignin-based friction material,” (1997) Canadian Patent Application 2,242,554.Google Scholar
  34. 34.
    J. H. Lora, A. W. Creamer, L. Wu, and J. Ash (1994) Proc. Adh. Bonded Wood Symp. Forest Prod. Soc. Madison, Wisconsin, pp. 384–394.Google Scholar
  35. 35.
    W. C. Senyo, A. W. Creamer, L. Wu, and J. H. Lora (1989) ACS Symp. Ser. No. 397, 546.Google Scholar
  36. 36.
    P. C. Muller and W. G. Glasser (1984) J. Adh. 17, 157–173.Google Scholar
  37. 37.
    P. C. Muller, S. S. Kelley, and W. G. Glasser (1984) J. Adh. 17, 185–206.Google Scholar
  38. 38.
    W. G. Glasser, V. P. Saraf, and W. H. Newman (1982) J. Adh. 14, 233–255.Google Scholar
  39. 39.
    W. H. Newman and W. G. Glasser (1985) Holzforschung 39, 345–353.Google Scholar
  40. 40.
    C. Phanopoulos and J. J. Vanden Ecker (1996) “Process for binding lignocellulosic material,” WO 96/32444.Google Scholar
  41. 41.
    W. G. Glasser and R. H. Leitheiser (1984) Polymer Bull. 12, 1–5.Google Scholar
  42. 42.
    C. A. Barnett and W. G. Glasser (1989) ACS Symp. Ser. No. 397, 435–451.Google Scholar
  43. 43.
    W. L.-S. Nieh and W. G. Glasser (1989) ACS Symp. Ser. No. 397, 506–514.Google Scholar
  44. 44.
    K. Hofmann and W. G. Glasser (1993) J. Wood Chem. Technol. 13, 73–95.Google Scholar
  45. 45.
    K. Hofmann and W. G. Glasser (1993) J. Adh. 40, 229–241.Google Scholar
  46. 46.
    K. Hofmann and W. G. Glasser (1994) Macromol. Chem. Phys. 195, 65–80.Google Scholar
  47. 47.
    W. G. Glasser and R. K. Jain (November 1996) “The green card: Development of a lignin-based epoxy resin for use in printed circuit boards (PCB),” Final project report to IBM.Google Scholar
  48. 48.
    J. M. Shaw, S. L. Buchwalter, J. C. Hedrick, S. K. Kang, L. L. Kosbar, J. D. Gelorme, D. A. Lewis, S. Purushothaman, R. Saraf, and A. Viehbeck (1996) Printed Circuit Fabrication 19, 38–44.Google Scholar
  49. 49.
    L. L. Kosbar, J. D. Gelorme, R. M. Japp, and W. T. Fotorny (2001) J. Indust. Ecol. 4, 93–105.Google Scholar
  50. 50.
    J. Oberkofler (2001) “Sulphur-free lignin and derivatives thereof for reducing the formation of slime and deposits in industrial plants,” WO 01/68530 A2.Google Scholar
  51. 51.
    Lignopol Polymere Stoffe GmbH, Muehlacker, Germany.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Granit S. A, Media
  2. 2.Department of Wood Science and Forest ProductsVirginia Polytechnic Institute and State UniversityBlacksburg

Personalised recommendations