Journal of Chemical Ecology

, Volume 25, Issue 9, pp 2161–2175 | Cite as

Toxicity of Dangerous Prey: Variation of Tetrodotoxin Levels Within and Among Populations of the Newt Taricha granulosa

  • Charles T. Hanifin
  • Mari Yotsu-Yamashita
  • Takeshi Yasumoto
  • Edmund D. BrodieIII
  • Edmund D. BrodieJr.


The ability to identify and accurately measure traits at the phenotypic interface of potential coevolutionary interactions is critical in documenting reciprocal evolutionary change between species. We quantify the defensive chemical trait of a prey species, the newt Taricha granulosa, thought to be part of a coevolutionary arms race. Variation in newt toxicity among populations results from variation in levels of the neurotoxin tetrodotoxin (TTX). Individual variation in TTX levels occurs within populations. Although TTX exists as a family of stereoisomers, only two of these (TTX and 6-epi-TTX) are likely to be sufficiently toxic and abundant to play a role in the defensive ecology of the newt.

Taricha granulosa Caudata coevolution tetrodotoxin predator–prey arms race 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, W. A. 1992. Manual of Quantitative Genetics, 5th ed. Academic Enterprises, Pullman, Washington.Google Scholar
  2. Berenbaum, M. R., and Zangerl, A. R. 1992. Quantification of chemical coevolution, pp. 69-87, in R. S. Fritz and E. L. Simms (eds.). Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. University of Chicago Press, Chicago.Google Scholar
  3. Berenbaum, M. R., and Zangerl, A. R. 1998. Chemical phenotype matching between a plant and its insect herbivore. Proc. Natl. Acad. Sci. U.S.A. 95:13743-13748.Google Scholar
  4. Bernays, E. A., and Chapman, R. F. 1994. Host-Plant Selection by Phytophagous Insects. Chapman Hall, New York.Google Scholar
  5. Brandon, R. A., and Huheey, J. E. 1981. Toxicity in the plethodontid salamanders Pseudotriton ruber and Pseudotriton montanus (Amphibia, Caudata). Toxicon 19:25-31.Google Scholar
  6. Brandon, R. A., and Huheey, J. E. 1985. Salamander skin toxins, with special reference to Necturus lewisi. Brimleyana 10:75-82.Google Scholar
  7. Brodie, E. D., Jr. 1968. Investigations on the skin toxin of the adult rough-skinned newt, Taricha granulosa. Copeia 1968:307-313.Google Scholar
  8. Brodie, E. D., Jr., Hensel, J. L., Jr., and Johnson, J. A. 1974. Toxicity of the urodele amphibians Taricha, Notophthalmus, Cynops, and Paramesotriton (Salamandridae). Copeia 1974:506-511.Google Scholar
  9. Brodie, E. D., III, and Brodie, E. D., Jr. 1990. Tetrodotoxin resistance in garter snakes: An evolutionary response of predators to dangerous prey. Evolution 44:651-659.Google Scholar
  10. Brodie, E. D., III, and Brodie, E. D., Jr. 1991. Evolutionary response of predators to dangerous prey: Reduction of toxicity of newts and resistance of garter snakes in island populations. Evolution 45:221-224.Google Scholar
  11. Brodie, E. D., III, and Brodie, E. D., Jr. 1999. Predator-prey arms races. Bioscience 49:357-368.Google Scholar
  12. Daly, J. W., Highet, R. J., and Meyers, C. W. 1984. Occurrence of skin alkaloids in non-dendrobatid frogs from Brazil (Bufonidae), Australia (Myobatrachidae), and Madagascar (Mantellinae). Toxicon 25:279-285.Google Scholar
  13. Daly, J. W., Meyers, C. W., and Whittaker, N. 1987. Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic, noxious substances in the Amphibia. Toxicon 25:1021-1095.Google Scholar
  14. Daly, J. W., Meyers, C. W., Yotsu-Yamashita, M., and Yasumoto, T. 1994. First occurrence of tetrodotoxin in a dendrobatid frog (Colostethus inguinalis), with further reports for the bufonid genus Atelopus. Toxicon 32:279-285.Google Scholar
  15. Daly, J. W., Padgett, W. L., Saunders, R. L., and Cover, J. F., Jr. 1997. Absence of tetrodotoxin in a captive-raised riparian frog, Atelopus varius. Toxicon. 35:705-709.Google Scholar
  16. Fuhrman, F. A., 1986. Tetrodotoxin, tarichatoxin, and chiriquitoxin: Historical perspectives. Ann. N.Y. Acad. Sci. 479:1-14.Google Scholar
  17. Futuyma, D. J., and Slatkin, M. 1983. Coevolution. Sinauer, Sunderland, Massachusetts.Google Scholar
  18. Groves, J. D. 1980. Mass predation on a population of the American toad Bufo americanus. Am. Mid. Nat. 103:202-203.Google Scholar
  19. Janzen, D. H. 1980. When is it coevolution? Evolution 34:611-612.Google Scholar
  20. Kao, C. Y., and Walker, S. E. 1982. Active groups of saxitoxin and tetrodotoxin as deduced from actions of saxitoxin analogues in frog muscle and squid axon. J. Physiol. (London) 323:619-637.Google Scholar
  21. Kao, C. Y., and Yasumoto, T. 1985. Actions of 4-epitetrodotoxin and anhydrotetrodotoxin on the squid axon. Toxicon 23:729-735.Google Scholar
  22. Kotaki, Y., and Shimizu, Y. 1993. 1-Hydroxy-5,11-dideoxytetrodotoxin, the first N-hydroxy and ring-deoxy derivative of tetrodotoxin found in the newt Taricha granulosa. J. Am. Chem. Soc. 115:827-830.Google Scholar
  23. Martin, J. S., and Martin, M. M. 1982. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidines, and protein-precipitating constituents in mature foliage of six oak species. Oecologia 61:342-345.Google Scholar
  24. Matsumura, K. 1995. Reexamination of tetrodotoxin production by bacteria. Appl. Environ. Microbiol. 61:3468-3470.Google Scholar
  25. Mebs, D., Yotsu-Yamashita, M., Yasumoto, T., Lotters, S., and Schluter, A. 1995. Further report of the occurrence of tetrodotoxin in Atelopus species (Family: Bufonidae). Toxicon 33:246-249.Google Scholar
  26. Mosher, H. S., Fuhrman, F. A., Buchwald, H. D., and Fischer, H. G. 1964. Tarichatoxin-tetrodotoxin: A potent neurotoxin. Science 144:1100-1110.Google Scholar
  27. Nakamura, M., and Yasumoto, T. 1985. Tetrodotoxin derivatives in puffer fish. Toxicon 23:271-276.Google Scholar
  28. Rosenthal, G. A., and Berenbaum, M. R. (eds.). 1991. Herbivores, Their Interactions with Secondary Plant Metabolites, 2nd ed. Academic Press, San Diego.Google Scholar
  29. Shimizu, Y., and Kobayashi, M. 1983. Apparent lack of tetrodotoxin biosynthesis in captured Taricha torosa and Taricha granulosa. Chem. Pharm. Bull. 31:3625-3631.Google Scholar
  30. Spencer, K. C. 1988. Introduction: chemistry and coevolution, pp. 1-11, in K. C. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, San Diego.Google Scholar
  31. Thompson, J. N. 1994. The Coevolutionary Process. University of Chicago Press, Chicago.Google Scholar
  32. Vermeij, G. J. 1994. The evolutionary interaction among species: Selection, escalation, and coevolution. Annu. Rev. Ecol. Syst. 25:219-236.Google Scholar
  33. Wakely, J. F., Fuhrman, G. J., Fuhrman, F. A., Fischer, H. G., and Mosher, H. S. 1966. The occurrence of tetrodotoxin (tarichatoxin) in Amphibia and the distribution of the toxin in the organs of newts (Taricha). Toxicon 3:195-203.Google Scholar
  34. Wu, B. Q., Yang, L., Kao, C. Y., Levinson, S. R., Yotsu-Yamashita, M., and Yasumoto, T. 1996. 11-oxo-tetrodotoxin and a specifically labeled 3H-tetrodotoxin. Toxicon. 34:407-416.Google Scholar
  35. Yang, L., Kao, C. Y., and Yasumoto, T. 1992. Actions of 6-epitetrodotoxin and 11-deoxytetrodotoxin on the frog skeletal muscle fiber. Toxicon 30:635-643.Google Scholar
  36. Yasumoto, T., and Michishita, T. 1985. Fluorometric determination of tetrodotoxin by High Performance Liquid Chromatography. Agric. Biol. Chem. 49:3077-3080.Google Scholar
  37. Yasumoto, T., and Yotsu-Yamashita, M. 1996. Chemical and etiological studies on tetrodotoxin and its analogs. J. Toxicol. Toxin Rev. 15:81-90.Google Scholar
  38. Yasumoto, T., Yotsu, M., Murata, M., and Naoki, H. 1988. New tetrodotoxin analogs from the newt Cynops ensicauda. J. Am. Chem. Soc. 110:2344-2345.Google Scholar
  39. Yosef, R., and Whitman, D. W. 1992. Predator exaptations and defensive adaptations in evolutionary balance: No defense is perfect. Evol. Ecol. 6:527-536.Google Scholar
  40. Yotsu, M., Yamazaki, T., Meguro, Y., Endo, A., Murata, M., Naoki, H., and Yasumoto, T. 1987. Production of tetrodotoxin and its derivatives by Pseudomonas sp. isolated from the skin of a pufferfish. Toxicon 25:225-228.Google Scholar
  41. Yotsu, M., Endo, A., and Yasumoto, T. 1989. An improved tetrodotoxin analyser. Agric. Biol. Chem. 53:893-895.Google Scholar
  42. Yotsu, M., Endo, A., and Yasumoto, T. 1990. Distribution of tetrodotoxin, 6-epitetrodotoxin, and 11-deoxytetrodotoxin in newts. Toxicon 28:238-241.Google Scholar
  43. Yotsu-Yamashita, M., Mebs, D., and Yasumoto, T. 1992. Tetrodotoxin and its analogues in extracts from the toad Atelopus oxyhyns (Family: Bufonidae). Toxicon 30:1489-1492.Google Scholar
  44. Zar, J. H. 1984. Biostatistical Analysis, 2nd ed. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Charles T. Hanifin
    • 1
  • Mari Yotsu-Yamashita
    • 2
  • Takeshi Yasumoto
    • 2
  • Edmund D. BrodieIII
    • 3
  • Edmund D. BrodieJr.
    • 1
  1. 1.Department of BiologyUtah State UniversityLogan
  2. 2.Faculty of AgricultureTohoku UniversityAoba-kuJapan
  3. 3.Department of BiologyIndiana UniversityBloomingtonIndiana

Personalised recommendations