Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World

  • A. K. Mohanty
  • M. Misra
  • L. T. Drzal


Sustainability, industrial ecology, eco-efficiency, and green chemistry are guiding the development of the next generation of materials, products, and processes. Biodegradable plastics and bio-based polymer products based on annually renewable agricultural and biomass feedstock can form the basis for a portfolio of sustainable, eco-efficient products that can compete and capture markets currently dominated by products based exclusively on petroleum feedstock. Natural/Biofiber composites (Bio-Composites) are emerging as a viable alternative to glass fiber reinforced composites especially in automotive and building product applications. The combination of biofibers such as kenaf, hemp, flax, jute, henequen, pineapple leaf fiber, and sisal with polymer matrices from both nonrenewable and renewable resources to produce composite materials that are competitive with synthetic composites requires special attention, i.e., biofiber–matrix interface and novel processing. Natural fiber–reinforced polypropylene composites have attained commercial attraction in automotive industries. Natural fiber—polypropylene or natural fiber—polyester composites are not sufficiently eco-friendly because of the petroleum-based source and the nonbiodegradable nature of the polymer matrix. Using natural fibers with polymers based on renewable resources will allow many environmental issues to be solved. By embedding biofibers with renewable resource–based biopolymers such as cellulosic plastics; polylactides; starch plastics; polyhydroxyalkanoates (bacterial polyesters); and soy-based plastics, the so-called green bio-composites are continuously being developed.

Sustainable bio-composites natural fiber bioplastic cellulosic plastic polylactides polyhydroxyalkanoates soybean-based plastic fiber-matrix interface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Plant/Crop-based Renewable Resources 2020, URL: Scholar
  2. 2.
    The Technology Roadmap for Plant/Crop-based Renewable Resources 2020, URL: Scholar
  3. 3.
    A. K. Mohanty, M. Misra, and G. Hinrichsen (2000) Macromol. Mater. Sci. Eng. 276/277, 1–24.Google Scholar
  4. 4.
    A. K. Mohanty, M. Misra, and L. T. Drzal (2001) Compos. Interf. 8, 313–343.Google Scholar
  5. 5.
    A. Scott (2000) Chem. Week. Sept. 13, 73.Google Scholar
  6. 6.
    T. U. Gerngross and S. C. Slater (2000) Scientific American, August, 37–41.Google Scholar
  7. 7.
    P. R. Gruber, D. Glassner, and E. Vink (2002) Polymer. Mater. Eng. 86, 337.Google Scholar
  8. 8.
    G. Scott and D. M. Wiles (2001) Biomacromolecules 2, published in web 08/03/2001.Google Scholar
  9. 9.
    A. K. Mohanty, M. Misra, and L. T. Drzal (2002) Polymer. Mater. Sci. Eng. 86, 341–342.Google Scholar
  10. 10.
    S. M. Thomas (2001) Mater. World 9, 24.Google Scholar
  11. 11.
    A. M. Rouchi (2000) Chem. Eng. News November 13, 29–32.Google Scholar
  12. 12.
    W. D. Brouwer (2000) SAMPE J 36, 18–23.Google Scholar
  13. 13.
    A. K. Mohanty, M. Misra, and L. T. Drzal (2001) American Society for Composites, 16th Annual Technical Conference September 9–12 at Blacksburg. Proc. Am. Soc. Composites M. W. Hyer and A. C. Loos (Eds.).Google Scholar
  14. 14.
    R. E. Drumright, P. R. Gruber, and D. E. Henton (2000) Adv. Mater. 12, 1841–1846.Google Scholar
  15. 15.
    C. Lanzillotta, A. Pipino, and D. Lips (2002) ANTEC 60, 2185–2189.Google Scholar
  16. 16.
    Press Release October 2001: U.S. Department of Energy Awards Metaboloix, Inc. $7.4 Million to Expand the Development of Bio-based Plastic Production in Plants. 01.htmlGoogle Scholar
  17. 17.
    A. K. Mohanty, M. A. Khan, S. Sahoo, and G. Hinrichsen (2000) J. Mater. Sci. 35, 2589–2595.Google Scholar
  18. 18.
    S. L. Wilkinson (2001) Chem. Eng. News January, 61.Google Scholar
  19. 19.
    Elion, G. R; 1993, U.S. Patent 5244 945.Google Scholar
  20. 20.
    D. Hokens, A. K. Mohanty, M. Misra, and L. T. Drzal (2001) Polymer Preprint Polymer Chem. Div. Am. Chem. Soc. 42, 71–72.Google Scholar
  21. 21.
    L. T. Drzal, A. K. Mohanty, P. Tummala, and M. Misra (2002), Polym. Mater. Sci. Eng. 87, 117–118.Google Scholar
  22. 22.
    G. I. Williams and R. P. Wool (2000) Appl. Compos. Mater. 7, 421–432.Google Scholar
  23. 23.
    P. Mapleston (1999) Mod. Plastics, April, 73–74.Google Scholar
  24. 24.
    “Grown to Fit the Part,” (1999) DaimlerChrysler High Tech. Rep. 82–85.Google Scholar
  25. 25.
    W. F. Powers (2000) Adv. Mater. Process May, 38–41.Google Scholar
  26. 26.
    “Green Door-Trim Panels Use PP and Natural Fibers,” (2000) Plastic Technol. November, 27.Google Scholar
  27. 27.
    J. L. Broge (2000) Automotive Eng. Int. October, p. 120.Google Scholar
  28. 28.
    Carl Eckert (Kline & Co, NJ); October 4–6, 2000, Memphis, TN, USA.Google Scholar
  29. 29.
    L. T. Drzal, A. K. Mohanty, and M. Misra (2001) Polymer Preprint Polymer Chem. Div. Am. Chem. Soc. 42, 31–32.Google Scholar
  30. 30.
    A. K. Mohanty, L. T. Drzal, and M. Misra (2002) J. Adh. Sci. Technol. 16, 999–1015.Google Scholar
  31. 31.
    A. K. Mohanty, L. T. Drzal, and M. Misra (2002) in A. V. Pocius and J. G. Dillards (Eds.), Proc. 25 th Annu. Meet. Adh. Soc.; 2 nd World Congr. Adh. Rel. Phenomenon (WCARP-II), February 10–14, Orlando, Florida, pp. 328–330.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Composite Materials and Structures CenterMichigan State UniversityEast Lansing

Personalised recommendations