, Volume 11, Issue 6, pp 451–465 | Cite as

Biomarkers as Diagnostic Tools for Evaluating Effects of Unknown Past Water Quality Conditions on Stream Organisms

  • Rita TriebskornEmail author
  • Stefan Adam
  • Heidi Casper
  • Wolfgang Honnen
  • Michael Pawert
  • Michael Schramm
  • Julia Schwaiger
  • Heinz-R. Köhler


The following biomarkers were investigated in stream populations of juvenile brown trout (Salmo trutta f. fario) and gammarids (Gammarus pulex) to determine if crayfish mortality could have been confounded by pollutants: (1) alterations of fish liver ultrastructure, (2) fish gill and kidney histopathology, (3) stress protein (hsp70) expression in fish liver and gills and in gammarids, and (4) changes in various blood parameters of brown trout. In addition, the following measurements were conducted in parallel with the biological sampling: (a) chemical analyses including several pesticides, organochlorines, PCBs, and PAHs in sediment and tissue samples of brown trout and crayfish (Astacus astacus), and (b) limnochemical analyses of nutrients, electrolytes, dissolved oxygen content, temperature and pH. Biomarkers together with chemical and limnochemical analyses concomitantly indicated moderate pollution of the stream at all sampling sites. Biological data indicated a transient, episodic event at one sampling site resulting (a) in altered stress protein levels in gills and livers of trout and in whole gammarids as well as (b) in elevated numbers of macrophages in liver tissue. Biomarker responses provided spatial and temporal evidence that a contaminant release was associated with the crayfish mortalities observed in this stream system.

Trout biomarkers Crayfish mortality Ultrastructure and histopathology Stress proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, S., Pawert, M., Lehmann, R., Roth, B., Müller, E. and Triebskorn, R. (2001). Physicochemical and morphological characterization of two small polluted streams in Southwest Germany. J. Aquat. Ecosyst. Stress Recov. 8(3/4), 179–94.Google Scholar
  2. Adams, S.M. (1990). Status and use of bioindicators for evaluating effects of chronic stress on fish. Am. Fisheries Soc. Symp. 8, 1–8.Google Scholar
  3. Adams, S.M. (2000). Assessing sources of stress to aquatic ecosystems using integrated biomarkers. In E. Balazs, E. Galante, J.M. Lynch J.S. Schepers, J.-P. Toutant, D. Werner and P.A.T.J. Werry (eds). Biological Resource Management Connecting Science and Policy, pp. 17–29. Berlin: Springer.Google Scholar
  4. Adams, S.M., Shepard, K.L., Greeley, M.S. Jr, Ryon, M.G., Jimenez, B.D., Shugart, L.R., McCarthy, J.F. and Hinton, D.E. (1989). The use of bioindicators for assessing the effects of pollutant stress in fish. Mar. Eviron. Res. 28, 459–64.Google Scholar
  5. Adams, S.M., Bevelhimer, M.S., Greeley, M.S., Levine, D.A. and Teh, S.J. (1999). Ecological risk assessment in a large river reservoir: 6. Bioindicators of fish population health. Environ. Toxicol. Chem. 18(4), 628–40.Google Scholar
  6. Adams, S.M., Greeley, M.S. and Ryon, M.G. (2000). Evaluating effects of contaminants on fish health at multiple levels of biological organization: extrapolating from lower to higher levels. Human Ecolog. Risk Assess. 6(1), 15–27.Google Scholar
  7. Adams, S.M., Giesy, J.P., Tremblay, L.A. and Eason, C.T. (2001). The use of biomarkers in ecological risk assessment: recommendations from the christchurch conference on biomarkers in ecotoxicology. Biomarkers 6(1), 1–6.Google Scholar
  8. Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem. 72, 248–54.Google Scholar
  9. Braunbeck, T. and Völkl, A. (1993). Toxicant-induced cytological alterations in fish liver as biomarkers of environmental pollution? A case study on hepatocellular effects of dinitro-O-cresol in golden ide (Leuciscus idus melanotus). In T. Braunbeck, W. Hanke and H. Segner (eds) Fish Ecotoxicology and Ecophysiology. pp. 55–80. VCH: Weinheim.Google Scholar
  10. Bucher, F. and Hofer, R. (1993). The effects of treated domestic sewage on three organs (gills, kidney, liver) of brown trout (Salmo trutta). Water Res. 27(2), 255–61.Google Scholar
  11. Buckley, J.A. (1977). Heinz body haemolytic anaemia in coho salmo (Oncorhynchus kisutch) exposed to chlorinated waste-water. J. Fisheries Res. Can. Board. 34, 215–24.Google Scholar
  12. Cerenius, L., Söderhäll, K., Persson, M. and Ajaxon, R. (1988). The crayfish plague fungus Aphanomyces astaci—diagnosis, isolation, and pathobiology. Freshwater Crayfish 7, 131–44.Google Scholar
  13. Clifton-Hadley, R.S., Bucke, D. and Richards, R.H. (1984). Proliferative kidney disease of salmonid fish. A review. J. Fish Dis. 7, 363–77.Google Scholar
  14. Depledge, M.H. and Fossi, M.C. (1994). The role of biomarkers in environmental assessment (2). Invertebrates. Ecotoxicology 3, 161–72.Google Scholar
  15. Eckwert, H., Alberti, G. and Köhler, H.-R. (1997). The induction of stress proteins (hsp) in Oniscus asellus (Isopoda) as a molecular marker of multiple heavy metal exposure. I. Principles and toxicological assessment. Ecotoxicology 6, 249–62.Google Scholar
  16. Fader, S.C., Yu, Z. and Spotila, J.R. (1994). Seasonal variation in heat shock proteins (hsp70) in stream fish under natural conditions. J. Thermal Biol. 19(5), 335–41.Google Scholar
  17. Gernhöfer, M., Pawert, M., Schramm, M., Müller, E. and Triebskorn, R. (2001). Ultrastructural biomarkers as tools to characterize the health status of fish in contaminated streams. J. Aquat. Ecosyst. Stress Recov. 8(3/4), 241–60.Google Scholar
  18. Gherardi, F. and Holdich, D.M. (1999). Crayfish in Europe as Alien Species. How to Make the Best of a Bad Situation. Rotterdam, Brookfield: A.A. Balkema Publishers.Google Scholar
  19. Guven, K., Duce, J.A. and de Pomerai, D.I. (1994). Evaluation of a stress-inducible transgenic nematode strain for rapid aquatic toxicity testing. Aquat. Toxicol. 29, 119–37.Google Scholar
  20. Ham, K.D., Adams, S.M. and Peterson, M.J. (1997). Application of multiple bioindicators to differentiate spatial and temporal variability from effects of contaminant exposure on fish. Ecotoxicol. Environ. Saf. 37, 53–61.Google Scholar
  21. Hoffmann, R. and Dangschat, H. (1981). A note on the occurrence of proliferative kidney disease in Germany. Bull. Eur. Ass. Fish Pathol. 1, 33.Google Scholar
  22. Honnen, W., Rath, K., Schlegel, T., Schwinger, A. and Frahne, D. (2001). Chemical analyses of water, sediment and biota in two small streams in Southwest Germany. J. Aquat. Ecosyst. Stress Recov. 8(3/4), 195–213.Google Scholar
  23. Jülich, F. (1979). Hämatologische Untersuchungen an Regenbogenforellen (Salmo gairdneri) und Karpfen (Cyprinus carpio) nach Einwirkung von sublethalen Konzentrationen der Pflanzenschutzmittel Rogor, Benomyl, Pomuran, und Domatol-Spezial. Zeitschrift für angewandte Zoologie 66, 475–504.Google Scholar
  24. Karnovsky, M.J. (1971). Use of ferricyanide-reduced osmium tetroxide in electron microscopy. J. Cell. Biol. 51, 284.Google Scholar
  25. Klee, O. (1991). Angewandte Hydrobiologie. Thieme, Stuttgart, Jena.Google Scholar
  26. Köhler, H.-R., Eckwert, H., Triebskorn, R. and Bengtsson, G. (1999). Interaction between tolerance and 70 kDa stress protein (hsp70) induction in collembolan populations exposed to long-term metal pollution. Appl. Soil. Ecol. 11, 43–52.Google Scholar
  27. Köhler, H.-R., Bartussek, C., Eckwert, H., Farian, K., Gränzer, S., Knigge, T. and Kunz, N. (2001). The hepatic 70kDa stress protein (hsp70) response to interacting abiotic parameters in fish exposed to various levels of pollution. J. Aquat. Ecosyst. Stress Recov. 8(3/4), 261–79.Google Scholar
  28. Luckenbach, T., Kilian, M., Triebskorn, R. and Oberemm, A. (2001). Fish early life stage tests as a tool to assess embryotoxic potentials in small streams. J. Aquat. Ecosyst. Stress Recov. 8(3/4), 355–70.Google Scholar
  29. Masterson, J.P. and Bannerman, R.T. (1994). Impacts of Stormwater Runoff on Urban Streams in Milwaukee County, Wisconsin. pp. 123–133. National Symposium on Water Quality. American Water Resources Association.Google Scholar
  30. McCarthy, L.R., and Shugart, J.F. (1990). Biomarkers of Environmental Contamination. Boca Raton: Lewis Publishers.Google Scholar
  31. Munkittrick, K.R. and McCarty, L.S. (1995). An integrated approach to aquatic ecosystem health: top-down, bottom-up or middle-out?. J. Aquat. Ecosyst. Health 4(2), 77–90.Google Scholar
  32. Oidtmann, B., Cerenius, L., Schmid, I., Hoffmann, R. and Söderhäll, K. (1999). Crayfish plague epizootics in Germany. Classification of two German isolates of the crayfish plague fungus Aphanomyces astaci by random amplification of polymorphic DNA. Dis. Aquat. Organ. 35, 235–8.Google Scholar
  33. Pawert, M., Müller, E. and Triebskorn, R. (1998). Ultrastructural changes in fish gills as biomarker to assess small stream pollution. Tissue and Cell 30, 617–26.Google Scholar
  34. Peakall, D.B. (1994). The role of biomarkers in environmental assessment (1). Introduction. Ecotoxicology 3, 157–60.Google Scholar
  35. Peakall, D.B. and Walker, C.H. (1994). The role of biomarkers in environmental assessment (3). Vertebrates. Ecotoxicology 3, 173–79.Google Scholar
  36. Pyza, E., Mak, P., Kramarz, P. and Laskowski, R. (1997). Heat shock proteins (HSP70) as biomarkers in ecotoxicological studies. Ecotoxicol. Environ. Saf. 38, 244–51.Google Scholar
  37. Rao, V.R., Mitz, S.V., Hadden, C.T. and Cornadby, B.W. (1996). Distribution of contaminants in aquatic organisms from East Fork Poplar Creek. Ecotoxicol. Environ. Saf. 33, 44–54.Google Scholar
  38. Reynolds, E.S. (1993). The use of lead citrate and high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–12.Google Scholar
  39. Rice, C.D., Kergosien, D.H. and Adams, S.M. (1996). Innate immune function as a bioindicator of pollution stress in fish. Ecotoxicol. Environ. Saf. 33, 186–92.Google Scholar
  40. Romeis, B. (1989). Mikroskopische Technik. München, Oldenburg.Google Scholar
  41. Schmidt, H., Bernet, B., Wahli, D., Meier, T.W. and Burkhardt-Holm, P. (1999). Active biomonitoring with brown trout and rainbow trout in diluted sewage plant effluents. J. Fish Biol. 54, 585–96.Google Scholar
  42. Schramm, M. (1998). Zur Ökotoxikologie von kleinen Flieβgewässern—Leberultrastruktur und hämatologische Parameter als Biomarker bei Fischen. Tübingen: Medien Verlag Köhler.Google Scholar
  43. Schramm, M., Müller, E. and Triebskorn, R. (1998). Brown trout (Salmo trutta) f. fario liver ultrastructure as biomarkers of small stream pollution. Biomarkers 3, 93–108.Google Scholar
  44. Schramm, M., Behrens, A., Braunbeck, T., Eckwert, H., Köhler, H.-R., Konradt, J., Müller, E., Pawert, M., Schwaiger, J., Segner, H. and Triebskorn, R. (1999). Cellular and biochemical biomarkers. In A. Gerhardt (ed.) Biomonitoring of Polluted Water. Environmental Research Forum 98, pp. 33–64. Ütikon-Zürich: Trans Tech Publications.Google Scholar
  45. Schramm, M., Müller, E. and Triebskorn, R. (2000). Der BMBF-Verbund Valimar: Biomarker. In A. Fomin, U. Arndt, D. Elsner, and A. Klumpp (eds.). Bioindikation-Biologische Testverfahren. pp. 175–9. Stuttgart: Günter Heimbach.Google Scholar
  46. Schwäbisches Tagblatt (1997a). Das Massensterben der Edelkrebse. August 9.Google Scholar
  47. Schwäbisches Tagblatt (1997b). Am Bauch greifen sie an. November 6.Google Scholar
  48. Schwaiger, J., Wanke, R., Adam, S., Pawert, M., Honnen, W. and Triebskorn, R. (1997). The use of histopathological indicators to evaluate contaminant-related stress in fish. J. Aquat. Ecosyst. Stress Recov. 6, 75–86.Google Scholar
  49. Schwaiger, J. (2001). Histopathological alterations and parasite infections in fish: indicators of multiple stress factors. J. Aquat. Ecosyst. Stress Recov. 8, 231–40.Google Scholar
  50. Schwoerbel, J., Gaumert, D., Hamm, A., Hansen, P.-D. Nusch, E.-A., Schilling, N. and Schindele, X. (1991) Akute und chronische Toxizität von anorganischen Stickstoff-Verbindungen unter besonderer Berücksichtigung des Ökosystemschutzes im aquatischen Bereich. In A. Hamm (ed.) Studie über Wirkungen und Qualitätsziele von Nährstoffen In Flieβgewässern., pp. 115–205. Sankt Augustin: Academia Verlag.Google Scholar
  51. Siligato, S. and Böhmer, J. (2001). Using indicators of fish health at multiple levels of biological organization to assess effects of stream pollution in Southwest Germany. J. Aquat. Ecosyst. Stress Recov. 8(3/4), 371–86.Google Scholar
  52. Söderhäll, K. and Cerenius, L. (1999). The crayfish plague fungus: history and recent advances. Freshwater Crayfish 12, 11–35.Google Scholar
  53. Triebskorn, R., Köhler, H.-R., Honnen, W., Schramm, M., Adams, S.M. and Müller, E.F. (1997). Induction of heat shock proteins, changes in liver ultrastructure, and alterations of fish behavior: are these biomarkers related and are they useful to reflect the state of pollution in the field? J. Aquat. Ecosyst. Stress Recov. 6, 57–73.Google Scholar
  54. Triebskorn, R., Adam, S., Behrens, A., Beier, S., Böhmer, J., Braunbeck, T., Eckwert, H., Frahne, D., Hartig, K., Honnen, W., Kappus, B., Klingebiel, M., Köhler, H.-R., Konradt, J., Lehmann, R., Luckenbach, T., Oberemm, A., Pawert, M., Schlegel, T., Schramm, M., Schüürmann, G., Schwaiger, J., Segner, H., Siligato, S., Strmac, M., Traunspurger, W. and Müller, E. (2000). Der BMBF-Verbund Valimar: Ziele, Inhalte, Methoden, Verbundpartner. In A. Fomin, U. Arndt, D. Elsner and A. Klumpp (eds.) Bioindikation-Biologische Testverfahren, pp. 165–8. Stuttgart: Günter Heimbach.Google Scholar
  55. Triebskorn, R., Böhmer, J., Braunbeck, T., Honnen, W., Köhler, H.-R., Lehmann, R., Oberemm, A., Schwaiger, J., Segner, H., Schüürmann, G. and Traunspurger, W. (2001). The project VALIMAR (VALIdation of bioMARkers for the assessment of small stream pollution): objectives, experimental design, summary of project results, and recommendations for the application of biomarkers in risk assessment. J. Aquat. Ecosyst. Stress Recov 8(3/4), 161–78.Google Scholar
  56. Van Gestel, C.A.M. and van Brummelen, T.C. (1996). Incorporation of the biomarker concept in ecotoxicology calls for a redefinition of terms. Exotoxicology 5, 217–25.Google Scholar
  57. Vijayan, M.M., Pereira, C., Kruzynski, G. and Iwama, G.K. (1998). Sublethal concentrations of contaminant induce the expression of hepatic heat shock protein 70 in two salmonids. Aquat. Toxicol. 40, 101–8.Google Scholar
  58. Vogt, G. (1999). Diseases of European freshwater crayfish, with particular emphasis on interspecific transmission of pathogens. In F. Gherardi, and D.M. Holdich (eds.) Crayfish in Europe as Alien Species. How to Make the Best of a Bad Situation, pp. 87–103. Rotterdam, Brookfield: Balkema.Google Scholar
  59. Zelikoff, J.T. (1989). Biomarkers of immunotoxicity in fish and other non-mammalian sentinel species: predictive value for mammals? Toxicology 129, 63–71.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Rita Triebskorn
    • 1
    • 2
    Email author
  • Stefan Adam
    • 1
  • Heidi Casper
    • 1
  • Wolfgang Honnen
    • 2
  • Michael Pawert
    • 1
  • Michael Schramm
    • 1
  • Julia Schwaiger
    • 3
  • Heinz-R. Köhler
    • 1
  1. 1.Animal Physiological EcologyUniversity of TübingenTübingenGermany
  2. 2.Steinbeis-Transfer Center for Ecotoxicology and EcophysiologyRottenburgGermany;
  3. 3.Department of Aquatic Ecology ResearchBavarian Water Management AgencyWielenbachGermany

Personalised recommendations