Neurochemical Research

, Volume 27, Issue 10, pp 957–980

mRNA Stability and the Control of Gene Expression: Implications for Human Disease

  • Elysia M. Hollams
  • Keith M. Giles
  • Andrew M. Thomson
  • Peter J. Leedman
Article

Abstract

Regulation of gene expression is essential for the homeostasis of an organism, playing a pivotal role in cellular proliferation, differentiation, and response to specific stimuli. Multiple studies over the last two decades have demonstrated that the modulation of mRNA stability plays an important role in regulating gene expression. The stability of a given mRNA transcript is determined by the presence of sequences within an mRNA known as cis-elements, which can be bound by trans-acting RNA-binding proteins to inhibit or enhance mRNA decay. These cis-trans interactions are subject to a control by a wide variety of factors including hypoxia, hormones, and cytokines. In this review, we describe mRNA biosynthesis and degradation, and detail the cis-elements and RNA-binding proteins known to affect mRNA turnover. We present recent examples in which dysregulation of mRNA stability has been associated with human diseases including cancer, inflammatory disease, and Alzheimer's disease.

mRNA stability mRNA decay cis-elements RNA-binding proteins disease cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Shatkin, A. J. and Manley, J. L. 2000. The ends of the affair: Capping and polyadenylation. Nat. Struct. Biol. 7:838-842.Google Scholar
  2. 2.
    Colgan, D. F. and Manley, J. L. 1997. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11:2755-2766.Google Scholar
  3. 3.
    Wahle, E. and Ruegsegger, U. 1999. 3′-End processing of prem-RNA in eukaryotes. FEMS Microbiol. Rev. 23:277-295.Google Scholar
  4. 4.
    Brawerman, G. 1981. The role of poly(A) sequence in mammalian messenger mRNA. CRC Crit. Rev. Biochem. 10:1-38.Google Scholar
  5. 5.
    Dreyfuss, G., Hentze, M., and Lamond, A. I. 1996. From transcript to protein. Cell 85:963-972.Google Scholar
  6. 6.
    Grabowski, P. J. and Black, D. L. 2001. Alternative RNA splicing in the nervous system. Prog. Neurobiol. 65:289-308.Google Scholar
  7. 7.
    Cole, C. N. 2001. Choreographing mRNA biogenesis. Nat. Genet. 29:6-7.Google Scholar
  8. 8.
    Proudfoot, N. 2000. Connecting transcription to messenger RNA processing. Trends Biochem. Sci. 25:290-293.Google Scholar
  9. 9.
    Siomi, M. C. 2000. The molecular mechanisms of messenger RNA nuclear export. Cell Struct. Funct. 25:227-235.Google Scholar
  10. 10.
    Reed, R. and Magni, K. 2001. A new view of mRNA export: separating the wheat from the chaff. Nat. Cell Biol. 3:E201-E204.Google Scholar
  11. 11.
    Shimotohno, K., Kodama, Y., Hashimoto, J., and Miura, K.-I. 1977. Importance of 5′-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. Proc. Natl. Acad. Sci. USA 5:2734-2738.Google Scholar
  12. 12.
    Drummond, R. D., Armstrong, J., and Colman, A. 1985. The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes. Nucleic Acids Res. 13:7375-7395.Google Scholar
  13. 13.
    Preiss, T. and Hentze, M. W. 1998. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392:516-520.Google Scholar
  14. 14.
    Blobel, G. 1973. A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc. Natl. Acad. Sci. USA 70:924-928.Google Scholar
  15. 15.
    Baer, B. W. and Kornberg, R. D. 1980. Repeating structure of cytoplasmic poly(A)-ribonucleoprotein. Proc. Natl. Acad. Sci. USA 77:1890-1892.Google Scholar
  16. 16.
    Grange, T., Sa, C. M. d., Oddos, J., and Pictet, R. 1987. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif. Nucleic Acids Res. 15:4771-4787.Google Scholar
  17. 17.
    Sachs, A. B., Bond, M. W., and Kornberg, R. D. 1986. A single gene from yeast for both nuclear and cytoplasmic polyadenylatebinding proteins: domain structure and expression. Cell 45:827-835.Google Scholar
  18. 18.
    Burd, C. G. and Dreyfuss, G. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615-621.Google Scholar
  19. 19.
    Burd, C., Matunis, E., and Dreyfuss, G. 1991. The multiple RNA-binding domains of the mRNA poly(A) binding protein have RNA-binding activities. Mol. Cell. Biol. 11:3419-3424.Google Scholar
  20. 20.
    Kuhn, U. and Pieler, T. 1996. Xenopus poly(A) binding protein: functional domains in RNA binding and protein: protein interaction. J. Mol. Biol. 256:20-30.Google Scholar
  21. 21.
    Deardorff, J. A. and Sachs, A. B. 1997. Differential effects of aromatic and charged residue substitutions in the RNA binding domains of the yeast poly(A) binding protein. J. Mol. Biol. 269:67-81.Google Scholar
  22. 22.
    Deo, R. C., Bonanno, J. B., Sonenberg, N., and Burley, S. K. 1999. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98:835-845.Google Scholar
  23. 23.
    Sachs, A. B. and Davis, R. W. 1989. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58:857-867.Google Scholar
  24. 24.
    Bernstein, P. and Peltz, S. W. 1989. The poly(A)-poly(A) binding protein complex is a major determinant of mRNA stability in vitro. Mol. Cell. Biol. 9:659-670.Google Scholar
  25. 25.
    Bernstein, P. and Ross, J. 1989. Poly (A), poly (A) binding protein and the regulation of mRNA stability. Trends Biochem. Sci. 14:373-377.Google Scholar
  26. 26.
    Gorlach, M., Burd, C. G., and Dreyfuss, G. 1994. The mRNA poly(A)-binding protein: localization, abundance and RNA binding specificity. Exp. Cell Res. 211:400-407.Google Scholar
  27. 27.
    Graves, R. A., Pandey, N. B., Chodchoy, N., and Marzluff, W. F. 1987. Translation is required for regulation of histone mRNA degradation. Cell 48:615-626.Google Scholar
  28. 28.
    Gay, D. A., Sisodia, S. S., and Cleveland, D. W. 1989. Autoregulatory control of β-tubulin mRNA stability is linked to translation elongation. Proc. Natl. Acad. Sci. USA 86:5763-5767.Google Scholar
  29. 29.
    Parker, R. and Jacobson, A. 1990. Translation and a 42-nucleotide segment with in the coding region of the mRNA encoded by the MATα1 gene are involved in promoting rapid mRNA decay in yeast. Proc. Natl. Acad. Sci. USA 87:2780-2784.Google Scholar
  30. 30.
    Aharron, T. and Schneider, R. J. 1993. Selective destabilization of short-lived mRNAs with the granulocyte-macrophage stimulating factor AU-rich 3′ noncoding region is mediated by a cotranlsational mechanism. Mol. Cell. Biol. 13:1971-1980.Google Scholar
  31. 31.
    Winstall, E., Gamache, M., and Raymond, V. 1995. Rapid mRNA degradation mediated by the c-fos AU-rich element and that mediated by the granulocyte-macrophage colony-stimulating factor 3′ AU-rich element occur through similar polysome-associated mechanisms. Mol. Cell. Biol. 15:3796-3804.Google Scholar
  32. 32.
    Curatola, A. M., Nadal, M. S., and Schneider, R. J. 1995. Rapid degradation of AU-rich element (ARE) mRNAs is activated by ribosome transit and blocked by secondary structure at any position 5′ to the ARE. Mol. Cell Biol. 15:6331-6340.Google Scholar
  33. 33.
    Wilson, T. and Treisman, R. 1988. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AUrich sequences. Nature 336:396-399.Google Scholar
  34. 34.
    Gingras, A. C., Raught, B., and Sonenberg, N. 1999. eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68:913-963.Google Scholar
  35. 35.
    Munroe, D. and Jacobson, A. 1990. mRNA poly(A) tail, a 3′ enhancer of translation initiation. Mol. Cell. Biol. 10:3441-3455.Google Scholar
  36. 36.
    Gallie, D. R. 1991. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5:2108-2116.Google Scholar
  37. 37.
    Tarun, S. Z. and Sachs, A. B. 1996. Association of the yeast poly(A) tail binding protein with translational initiation factor E1F-4G. EMBO J. 15:7168-7177.Google Scholar
  38. 38.
    Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. 1998. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2:135-40.Google Scholar
  39. 39.
    Craig, A. W. B., Haghighat, A., Yu, A. T. K., and Sonenberg, N. 1998. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392:520-523.Google Scholar
  40. 40.
    Imataka, H., Gradi, A., and Sonenberg, N. 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17:7480-7489.Google Scholar
  41. 41.
    Khaleghpour, K., Svitkin, Y. V., Craig, A. W., DeMaria, C. T., Deo, R. C., Burley, S. K., and Sonenberg, N. 2001. Translational repression by a novel partner of human poly(A) binding protein, Paip2. Mol. Cell 7:205-216.Google Scholar
  42. 42.
    Ross, J. and Sullivan, T. D. 1985. Half-lives of beta and gamma globin messenger RNAs and of protein synthetic capacity in cultured human reticulocytes. Blood 66:1149-1154.Google Scholar
  43. 43.
    Lekas, P., Tin, K. L., Lee, C., and Prokipcak, R. D. 2000. The human cytochrome P450 1A1 mRNA is rapidly degraded in HepG2 cells. Archives of Biochemistry & Biophysics 384:311-318.Google Scholar
  44. 44.
    Shaw, G. and Kamen, R. 1986. A conserved AU sequence form the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659-667.Google Scholar
  45. 45.
    Jones, T. and Cole, M. 1987. Rapid cytoplasmic turnover of c-myc mRNA; requirement of the 3′ untranslated sequences. Mol. Cell. Biol. 7:4513-4521.Google Scholar
  46. 46.
    Dani, C., Blanchard, J. M., Piechaczyk, M., Sabouty, S. E., Marty, L., and Jeanteur, P. 1984. Extreme instability of myc mRNA in normal and transformed human cells. Proc. Natl. Acad. Sci. USA 81:7046-7050.Google Scholar
  47. 47.
    Loflin, P. T., Chen, C.-Y. A., Xu, N., and Shyu, A.-B. 1999. Transcriptional pulsing approaches for analysis of mRNA turnover in mammalian cells. Methods 17:11-20.Google Scholar
  48. 48.
    Ross, J. 1999. Assays for analyzing exonucleases in vitro. Methods 17:52-59.Google Scholar
  49. 49.
    Wilson, G. M. and Brewer, G. 1999. Identification and characterization of proteins binding A + U rich elements. Methods 17:74-83.Google Scholar
  50. 50.
    Salles, F. J., Richards, W. G., and Strickland, S. 1999. Assaying the polyadenylation state of mRNAs. Methods 17:38-45.Google Scholar
  51. 51.
    Zhang, S., Williams, C. J., Wormington, M., Stevens, A., and Peltz, S. W. 1999. Monitoring mRNA decapping activity. Methods 17:46-51.Google Scholar
  52. 52.
    Levy, A. P., Levy, N. S., and Goldberg, M. A. 1996. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J. Biol. Chem. 271:2746-2753.Google Scholar
  53. 53.
    Iwai, Y., Bickel, M., Pluznik, D. H., and Cohen, R. B. 1991. Identification of sequences within the murine granulocytemacrophage colony-stimulating factor mRNA 3′-untranslated region that mediate mRNA stabilization induced by mitogen treatment of EL-4 thymoma cells. J. Biol. Chem. 266:17959-17965.Google Scholar
  54. 54.
    Brewer, G. 2000. Regulation of c-myc mRNA decay in vitro by a phorbol ester-inducible, ribosome-associated component in differentiating megakaryoblasts. J. Biol. Chem. 275:33336-33345.Google Scholar
  55. 55.
    Jinno, Y., Merlino, G. T., and Pastan, I. 1988. A novel effect of EGF on mRNA stability. Nucleic Acids Res. 16:4957-4966.Google Scholar
  56. 56.
    McCulloch, R. K., Walker, C. E., Chakera, A., Jazayeri, J., and Leedman, P. J. 1998. Regulation of EGF-receptor expression by EGF and TGF alpha in epidernoid cancer cells is cell typespecific. Int. J. Biochem. Cell Biol. 30:1265-1278.Google Scholar
  57. 57.
    Balmer, L. A., Beveridge, D. J., Jazayeri, J. A., Thomson, A. M., Walker, C. E., and Leedman, P. J. 2001. Identification of a novel AU-Rich element in the 3′ untranslated region of epidermal growth factor receptor mRNA that is the target for regulated RNA-binding proteins. Mol. Cell Biol. 21:2070-2084.Google Scholar
  58. 58.
    Staton, J. S. and Leedman, P. J. 1998. Posttranscriptional regulation of thyrotropin β-subunit messenger ribonucleic acid by thyroid hormone in murine thyrotrope tumor cells: a conserved mechanism across species. Endocrinology 139:1093-1100.Google Scholar
  59. 59.
    Yeap, B. B., Krueger, R. G., and Leedman, P. J. 1999. Posttranscriptional regulation of androgen receptor gene expression by androgen in prostate and breast cancer cells. Endocrinology 140:3182-3291.Google Scholar
  60. 60.
    Heaton, J. H., Tillman-Bogush, M., Leff, N. S., and Gelehrter, T. D. 1998. Cyclic nucleotide regulation of plasminogen activator-inhibitor mRNA stability in rat hepatoma cells. J. Biol. Chem. 275:14261-14268.Google Scholar
  61. 61.
    Staton, J. M., Thomson, A. M., and Leedman, P. J. 2000. Hormonal regulation of mRNA stability and RNA-protein interactions in the pituitary. J. Mol. Endocrinol. 25:17-34.Google Scholar
  62. 62.
    Guhaniyogi, J. and Brewer, G. 2001. Regulation of mRNA stability in mammalian cells. Gene 265:11-23.Google Scholar
  63. 63.
    Brewer, G. and Ross, J. 1988. Poly(A) shortening and degradation of the 3′ AU rich sequences of human c-myc mRNA in a cell free system. Mol. Cell. Biol. 8:1697-1708.Google Scholar
  64. 64.
    Laird-Offringa, I. A., DeWitt, C. L., Elfferich, P., and VanderEb, A. J. 1990. Poly(A) tail shortening is the translationdependent step in c-myc mRNA degradation. Mol. Cell. Biol. 10:6132-6140.Google Scholar
  65. 65.
    Shyu, A.-B., Belasco, J. G., and Greenberg, M. E. 1991. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5:221-231.Google Scholar
  66. 66.
    Muhlrad, D. and Parker, R. 1992. Mutations affecting stability and deadenylation of the yeast MFA2 transcript. Genes Dev. 6:2100-2111.Google Scholar
  67. 67.
    Decker, C. J. and Parker, R. 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7:1632-1643.Google Scholar
  68. 68.
    Muhlrad, D., Decker, C. J., and Parker, R. 1994. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes and Devlopment 8:855-866.Google Scholar
  69. 69.
    Lagnado, C. A., Brown, C. Y., and Goodall, G. J. 1994. AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol. Cell. Biol. 14:7984-7995.Google Scholar
  70. 70.
    Chen, C.-Y. A., Chen, T.-M., and Shyu, A.-B. 1994. Interplay of two functionally and structurally distinct domains of the c-fos AU-rich element specifies its mRNA destabilizing function. Mol. Cell. Biol. 14:416-426.Google Scholar
  71. 71.
    Chen, C.-Y. A., Xu, N. H., and Shyu, A. B. 1995. mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Mol. Cell. Biol. 15:5777-5778.Google Scholar
  72. 72.
    Wang, Z. R. and Kiledjian, M. 2001. Functional link between the mammalian exosome and mRNA decapping. Cell 107:751-762.Google Scholar
  73. 73.
    Ford, L. P., Bagga, P. S., and Wilusz, J. 1997. The poly(A) tail inhibits the assembly of a 3′-to-5′ exonuclease in an in vitro RNA stability system. Mol. Cell. Biol. 17:398-406.Google Scholar
  74. 74.
    Brewer, G. 1998. Characterization of c-myc 3′ to 5′ mRNA decay activities in an in vitro system. J. Biol. Chem. 273:34770-34774.Google Scholar
  75. 75.
    Mukherjee, D., Gao, M., O'Connor, J. P., Raijmakers, R., Pruijn, G., Lutz, C. S., and Wilusz, J. R. 2002. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J. 21:165-174.Google Scholar
  76. 76.
    Korner, C. G. and Wahle, E. 1997. Poly(A) tail shortening by a mammalian poly(A)-specific 3′-exoribonuclease. J. Biol. Chem. 272:10448-10456.Google Scholar
  77. 77.
    Korner, C. G. 1998. The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J. 17:5427-5437.Google Scholar
  78. 78.
    Buiting, K. 1999. The human gene for the poly(A)-specific ribonuclease PARN maps to 16p13 and has a truncated copy in the Prader-Willi/Angelmann syndrome region on 15q11-q13. Cytogenet. Cell Genet. 87:125-131.Google Scholar
  79. 79.
    Dehlin, E., Wormington, M., Korner, C. G., and Wahle, E. 2000. Cap-dependent deadenylation of mRNA. EMBO J. 19:1079-1086.Google Scholar
  80. 80.
    Gao, M., Wilusz, C. J., Peltz, S. W., and Wilusz, J. 2001. A novel mRNA-decapping activity in HeLa cytoplasmic extracts is regulated by AU-rich elements. EMBO J. 20:1134-1143.Google Scholar
  81. 81.
    Martinez, J., Ren, Y. G., Nilsson, P., Ehrenberg, M., and Virtanen, A. 2001. The mRNA cap structure stimulates rate of poly(A) removal and amplifies processivity of degradation. J. Biol. Chem. 276:27923-27929.Google Scholar
  82. 82.
    Tharun, S. and Parker, R. 2001. Targeting an mRNA for decapping: Displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol. Cell 8:1075-1083.Google Scholar
  83. 83.
    Mitchell, P. 1997. The 3′ end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev. 10:502-513.Google Scholar
  84. 84.
    Mian, I. S. 1997. Comparative sequence analysis of ribonucleases HII, III, II, PH and D. Nucleic Acids Res. 25:3187-3195.Google Scholar
  85. 85.
    Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D. 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′-5′ exoribonucleases. Cell 91:457-466.Google Scholar
  86. 86.
    Zanchin, N. I. T. and Goldfarb, D. S. 1999. The exosome subunit Rrp43p is required for the efficient maturation of 5.8S, 18S and 25S rRNA. Nucleic Acids Res. 27:1283-1288.Google Scholar
  87. 87.
    Allmang, C., Mitchell, P., Petfalski, E., and Tollervey, D. 2000. Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res. 28:1684-1691.Google Scholar
  88. 88.
    de la Cruz, J., Kressler, D., Tollervey, D., and Linder, P. 1998. Dob1p (mtr4p) is a putative atp-dependent rna helicase required for the 3′ end formation of 5.8s rrna in saccharomyces cerevisiae. EMBO J. 17:1128-1140.Google Scholar
  89. 89.
    Briggs, M. W., Burkard, K. T., and Butler, J. S. 1998. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen is essential for efficient 5.8sS rRNA 3′ end formation. J. Biol. Chem. 273:13255-13263.Google Scholar
  90. 90.
    Van Hoof, A., Lennertz, P., and Parker, R. 2000. Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell Biol. 20:441-452.Google Scholar
  91. 91.
    Allmang, C., Kufel, J., Chanfreau, G., Mitchell, P., Petfalski, E., and Tollervey, D. 1999. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18:5399-5410.Google Scholar
  92. 92.
    Chen, C. Y., Gherzi, R., Ong, S. E., Chan, E. L., Raijmakers, R., Pruijn, G. J. M., Stoecklin, G., Moroni, C., Mann, M., and Karin, M. 2001. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107:451-464.Google Scholar
  93. 93.
    Butler, J. S. 2002. The yin and yang of the exosome. Trends Cell. Biol. 12:90-96.Google Scholar
  94. 94.
    van Hoof, A. and Parker, R. 1999. The exosome: a proteosome for RNA? Cell 99:347-350.Google Scholar
  95. 95.
    Estevez, A. M., Kempf, T., and Clayton, C. 2001. The exosome of Trypanosoma brucei. EMBO J. 20:3831-3839.Google Scholar
  96. 96.
    Chekanova, J. A., Shaw, R. J., Wills, M. A., and Belostotsky, D. A. 2000. Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 SrRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J. Biol. Chem. 275:33158-33166.Google Scholar
  97. 97.
    Chekanova, J. A., Dutko, J. A., Mian, I. S., and Belostotsky, D. A. 2002. Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3′→5′ exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res. 30:695-700.Google Scholar
  98. 98.
    Meinsma, D., Scheper, W., Hlothuizen, P. E., vandenBrande, J. L., and Sussenbrach, J. S. 1992. Site-specific cleavage of IGF-II mRNAs requires sequence elements from two distinct regions of the IGF-II gene. Nucleic Acids Res. 20:5003-5009.Google Scholar
  99. 99.
    Binder, R., Horowitz, J. A., Balison, J. P., Koeller, D. M., Klausner, R. D., and Harford, J. B. 1994. Evidence that the pathway of degradation of transferrin receptor involves an endonucleolytic cleavage within the 3′ UTR and does not involve poly (A) tail shortening. EMBO J. 13:1969-1980.Google Scholar
  100. 100.
    Stoeckle, M. Y. 1991. Post-transcriptional regulation of groα, β, γ and IL-8 mRNAs by IL-1β. Nucleic Acids Res. 19:917-920.Google Scholar
  101. 101.
    Stoeckle, M. Y. 1992. Removal of a 3′ non-coding sequence is an initial step in degradation of groα mRNA and is regulated by interleukin-1. Nucleic Acids Res. 20:1123-1127.Google Scholar
  102. 102.
    Binder, R., Hwang, S. P., Ratnasbapathy, R., and Williams, D. L. 1989. Degradation of apolipoprotein II mRNA via endonucleolytic cleavage at 5′-AAU-3′/5′-UAA-3′ elements in single stranded loop domains at the 3′ noncoding region. J. Biol. Chem. 264:16910-16918.Google Scholar
  103. 103.
    Stoeckle, M. Y. and Hanafusa, H. 1989. Processing of 9E3 mRNA and regulation of its stability in normal and Rous sarcoma virus-transformed cells. Mol. Cell. Biol. 9:4738-4745.Google Scholar
  104. 104.
    Brown, B. D. and Harland, R. M. 1990. Endonucleolytic cleavage of a maternal homeobox mRNA in Xenopus oocytes. Genes Dev. 4:1925-1935.Google Scholar
  105. 105.
    Brown, B. D., Zipkin, I. D., and Harland, R. M. 1993. Sequence-specific endonucleolytic cleavage and protection of mRNA in Xenopus and Drosophila. Genes Dev. 7:1620-1631.Google Scholar
  106. 106.
    Pastori, R. L. and Schoenberg, D. R. 1993. The nuclease that specifically degrades albumin mRNA in vitro associates with Xenopus liver through the 80s ribosome complex. Arch. Biochem. Biophys. 305:313-319.Google Scholar
  107. 107.
    Rodgers, N. D., Wang, Z., and Kiledjian, M. 2002. Characterization and purification of a mammalian endoribonuclease specific for the α-globin mRNA. J. Biol. Chem. 277:2597-2604.Google Scholar
  108. 108.
    Bernstein, P. L., Herrick, D. J., Prokipcak, R. D., and Ross, J. 1992. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant. Genes Dev. 6:642-654.Google Scholar
  109. 109.
    Zhao, Z., Chang, F. C., and Furneaux, H. M. 2000. The identification of an endonuclease that cleaves within an HuR binding site in mRNA. Nucleic Acids Res. 28:2695-2701.Google Scholar
  110. 110.
    Nielsen, F. C. and Christiansen, J. 1992. Endonucleosis in the turnover of insulin-like growth factor II mRNA. J. Biol. Chem. 267:19404-19411.Google Scholar
  111. 111.
    Le Hir, H., Izaurralde, E., Maquat, L. E., and Moore, M. J. 2000. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19:6860-6869.Google Scholar
  112. 112.
    Nagy, E. and Macquat, L. E. 1998. A rule for terminationcodon position within intron-containing genes: when nonsense affects RNA abundance. Trends in Biochemical Science 23:198-199.Google Scholar
  113. 113.
    Gonzalez, C. I., Bhattacharya, A., Wang, W. R., and Peltz, S. W. 2001. Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 274:15-25.Google Scholar
  114. 114.
    Byers, P. H. 2002. Killing the messenger: new insights into nonsense-mediated mRNA decay. J. Clin. Invest. 109:3-6.Google Scholar
  115. 115.
    Chen, C.-Y. A. and Shyu, A.-B. 1994. Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol. Cell. Biol. 14:8471-8482.Google Scholar
  116. 116.
    Narayanan, C. S., Fujimoto, J., Geras-Raaka, E., and Gershengorn, M. C. 1992. Regulation by thyrotropin-releasing hormone (TRH) of TRH receptor mRNA degradation in rat pituitary GH3 cell. J. Biol. Chem. 267:17296-17303.Google Scholar
  117. 117.
    Fujimoto, J., Narayanan, C. S., Benjamin, J. E., and Gershengorn, M. C. 1992. Posttranscriptional up-regulation of thyrotropin-releasing hormone (TRH) receptor messenger ribonucleic acid by TRH in COS-1 cells transfected with mouse pituitary TRH receptor complementary deoxyribonucleic acid. 131:1716-1720.Google Scholar
  118. 118.
    Fujimoto, J., Narayanan, C. S., Benjamin, J. E., Heinflink, M., and Gershengorn, M. C. 1992. Mechanism of regulation of thyrotropin-releasing hormone receptor messenger ribonucleic acid in stably transfected rat pituitary cells. Endocrinology 130:1879-1884.Google Scholar
  119. 119.
    Mullner, E. W. and Kuhn, L. C. 1988. A stem-loop in the 3′ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm. Cell 53:815-825.Google Scholar
  120. 120.
    Koeller, D. M., Casey, J. L., Hentze, M. W., Gerhardt, E. M., Chan, L. N., Klausner, R. D., and Harford, J. B. 1989. A cytosolic protein binds to structural elements within the iron regulatory region of the transferrin receptor mRNA. Proc. Natl. Acad. Sci. USA 86:3574-3578.Google Scholar
  121. 121.
    Pandey, N. B. and Marzluff, W. F. 1987. The stem-loop structure at the 3′ end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol. Cell Biol. 7:4557-4559.Google Scholar
  122. 122.
    Pandey, A. B., Sun, J.-H., and Mazluff, W. F. 1991. Different mRNA complexes are fromed on the 3′ end of histone mRNA with nuclear and polyribosomal proteins. Nucleic Acids Res. 19:5653-5659.Google Scholar
  123. 123.
    Wang, X., Kiledjian, M., Weiss, I. M., and Liebhaber, S. A. 1995. Detection and characterization of a 3′ untranslated region ribonucleoprotein complex associated with human α-globin mRNA. Mol. Cell. Biol. 15:1769-1777.Google Scholar
  124. 124.
    Brown, C. Y., Lagnado, C. A., and Goodall, G. J. 1996. A cytokine mRNA-destabilizing element that is structurally and functionally distinct from A + U-rich elements. Proc. Natl. Acad. Sci. USA 93:13721-13725.Google Scholar
  125. 125.
    Gillis, P. and Malter, J. S. 1991. The adenosine-uridine binding factor recognises the AU-rich elements of cytokine, lymphokine and oncogene mRNAs. J. Biol. Chem. 266:3172-3177.Google Scholar
  126. 126.
    Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S., and Cerami, A. 1986. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc. Natl. Acad. Sci. USA 83:1670-1674.Google Scholar
  127. 127.
    Kontoyiannis, D., Pasparikis, M., Pizarro, T. T., Cominelli, F., and Kollias, G. 1999. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10:387-398.Google Scholar
  128. 128.
    Levy, A. P., Levy, N. S., and Goldberg, M. A. 1996. Hypoxiainducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von hippel lindau protein. J. Biol. Chem. 271:25492-25497.Google Scholar
  129. 129.
    Meijlink, F., Curran, T., Miller, A. D., and Verma, I. M. 1985. Removal of a 67-base pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene. Proc. Natl. Acad. Sci. USA 82:4987-4991.Google Scholar
  130. 130.
    Raymond, V., Atwater, J. A., and Verma, I. M. 1989. Removal of an mRNA destqabilizing element correlates with the increased oncogenicity of proto-oncogene fos. Oncogene Res. 5:1-12.Google Scholar
  131. 131.
    Chen, C.-Y. A. and Shyu, A.-B. 1995. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20:465-470.Google Scholar
  132. 132.
    Zubiaga, A. M., Belasco, J. G., and Greenberg, M. E. 1995. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 15:2219-2230.Google Scholar
  133. 133.
    Kabnick, K. S. and Housman, D. E. 1988. Determinants that contribute to cytoplasmic stability of human c-fos and β-globin mRNAs are located at several sites in each mRNA. Mol. Cell. Biol. 8:3244-3250.Google Scholar
  134. 134.
    Bakheet, 2001. ARED: human AU-rich element-containiong mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res. 29:246-254.Google Scholar
  135. 135.
    Pesole, G., Mignone, F., Gissi, C., Grillo, G., Licciulli, F., and Liuni, S. 2001. Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276:73-81.Google Scholar
  136. 136.
    Laroia, G., Sarkar, B., and Schneider, R. J. 2002. Ubiquitin-dependent mechanism regulates rapid turnover of AU-rich cytokine mRNAs. Proc. Natl. Acad. Sci. USA 99:1842-1846.Google Scholar
  137. 137.
    Wilkinson, K. D. 2000. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell Dev. Biol. 11:141-148.Google Scholar
  138. 138.
    Theil, E. C. 1998. The iron responsive element (IRE) family of mRNA regulators. Regulation of iron transport and uptake compared in animals, plants, and microorganisms. Met. Ions Biol. Syst. 35:403-434.Google Scholar
  139. 139.
    Addess, K. J., Basilion, J. P., Klausner, R. D., Rouault, T. A., and Pardi, A. 1997. Structure and dynamics of the iron responsive element RNA-implications for binding of the RNA by iron regulatory binding proteins. J. Mol. Biol. 274:72-83.Google Scholar
  140. 140.
    Thomson, A. M., Rogers, J. T., and Leedman, P. J. 1999. Iron-regulatory proteins, iron-responsive elements and ferritin mRNA translation. Int. J. Biochem. Cell Biol. 31:1139-1152.Google Scholar
  141. 141.
    Kuhn, L. C., Sculman, H. M., and Ponka, P. 1990. Iron transferring requirements and transferrin receptor expression in proliferating cells. Pages 149-191, in Ponka, P., Sculman, H. M., and Woodworth, R. C. (eds). Iron transport and storage, CRC, Boca Raton, FL.Google Scholar
  142. 142.
    Richardson, D. R. and Ponka, P. 1997. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta 1331:1-40.Google Scholar
  143. 143.
    Leibold, E. A. and Guo, B. 1992. Iron-dependent regulation of ferritin and transferrin receptor expression by iron responsive element binding protein. Annu. Rev. Nutr. 12:345-368.Google Scholar
  144. 144.
    Klausner, R. D., Rouault, T. A., and Harford, J. B. 1993. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72:19-28.Google Scholar
  145. 145.
    Rouault, T. A. and Klausner, R. D. 1996. Post-transcriptional regulation of genes of iron metabolism in mammalian cells. J. Biol. Inorg. Chem. 1:494-499.Google Scholar
  146. 146.
    Fleming, M. D., Trenor, C. C., Su, M. A., Foernzler, D., Beier, D. R., Dietrich, W. F., and Andrews, N. C. 1997. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat. Genet. 16:383-386.Google Scholar
  147. 147.
    Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F. B., Nussberger, W. F., S., Gollan, J. L., and Hediger, M. 1997. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482-488.Google Scholar
  148. 148.
    Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S. J., Moynihan, J., Paw, B. H., Drejer, A., Barut, B., Zapata, A., Law, T. C., Brugnara, C., Lux, S. E., Pinkus, G. S., Pinkus, J. L., Kingsley, P. D., Palis, J., Fleming, M. D., Andrews, N. C., and Zon, L. I. 2000. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776-781.Google Scholar
  149. 149.
    McKie, A. T., Marciani, P., Rolfs, A., Brennan, K., Wehr, K., Barrow, D., Miret, S., Bomford, A., Peters, T. J., Farzaneh, F., Hediger, M. A., Hentze, M. W., and Simpson, R. J. 2000. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5:299-309.Google Scholar
  150. 150.
    Theil, E. C. and Eisenstein, R. S. 2000. Combinatorial mRNA regulation: iron regulatory proteins and iso-iron-responsive elements (Iso-IREs). J. Biol. Chem. 275:40659-40662.Google Scholar
  151. 151.
    Ke, Y., Wu, J., Leibold, E. A., Walden, W. E., and Theil, E. C. 1998. Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding. Fine-tuning of mRNA regulation? J. Biol. Chem. 273:23637-23640.Google Scholar
  152. 152.
    Ponka, P. 1999. Cellular iron metabolism. Kidney Int. Suppl. 69:S2-S11.Google Scholar
  153. 153.
    Ponka, P. and Lok, C. N. 1999. The transferrin receptor: role in health and disease. Int. J. Biochem. Cell Biol. 31:1111-1137.Google Scholar
  154. 154.
    Sachs, A. B., Sarnow, P., and Hentze, M. W. 1997. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89:831-838.Google Scholar
  155. 155.
    Muckenthaler, M., Gray, N. K., and Hentze, M. W. 1998. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol. Cell 2:383-388.Google Scholar
  156. 156.
    Thomson, A. M., Rogers, J. T., and Leedman, P. J. 2000. Thyrotropin-releasing hormone and epidermal growth factor regulate iron-regulatory protein binding in pituitary cells via protein kinase C-dependent and-independent signaling pathways. J. Biol. Chem. 275:31609-31605.Google Scholar
  157. 157.
    de la Pena, P., Delgado, L. M., del Camino, D., and Barros, F. 1992. Cloning and expression of the thyrotropin-releasing hormone receptor from GH3 rat anterior pituitary cells. Biochem. J. 284:891-899.Google Scholar
  158. 158.
    de la Pena, P., Delgado, L. M., del Camino, D., and Barros, F. 1992. Two isoforms of the thyrotropin-releasing hormone receptor generated by alternative splicing have indistinguishable functional properties. J. Biol. Chem. 267:25703-25708.Google Scholar
  159. 159.
    Duthie, S. M., Taylor, P. L., Anderson, L., Cook, J., and Eidne, K. A. 1993. Cloning and functional characterisation of the human TRH receptor. Mol. Cell Endocrinol. 95:R11-R15.Google Scholar
  160. 160.
    Cao, J., O'Donnell, D., Vu, H., Payza, K., Pou, C., Godbout, C., Jakob, A., Pelletier, M., Lembo, P., Ahmad, S., and Walker, P. 1998. Cloning and characterization of a cDNA encoding a novel subtype of rat thyrotropin-releasing hormone receptor. J. Biol. Chem. 273:32281-32287.Google Scholar
  161. 161.
    Straub, R. E., Frech, G. C., Joho, R. H., and Gershengorn, M. C. 1990. Expression cloning of a cDNA encoding the mouse pituitary thyrotropin-releasing hormone receptor. Proc. Natl. Acad. Sci. USA 87:9514-9518.Google Scholar
  162. 162.
    Heuer, H., Schafer, M. K., O'Donnell, D., and Walker, P. 2000. Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats. J. Comp. Neurol. 428:319-336.Google Scholar
  163. 163.
    Dreyfuss, G., Kim, V. N., and Kataoka, N. 2002. Messenger RNA binding proteins and the messages they carry. Nat. Revs. Mol. Cell Biol. 3:195-205.Google Scholar
  164. 164.
    Fan, X. C. and Steitz, J. A. 1998. HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc. Natl. Acad. Sci. USA 95:15293-15928.Google Scholar
  165. 165.
    Leedman, P. I., Stein, A. R., and Chin, W. W. 1995. Regulated specific protein binding to a conserved region of the 3′-untranslated region of thyrotropin beta-subunit mrna. Mol. Endocrinol. 9:375-387.Google Scholar
  166. 166.
    Thomson, A. M., Rogers, J. T., Walker, C. E., Staton, J. M., and Leedman, P. J. 1999. Optimized RNA gel-shift and UV cross-linking assays for characterization of cytoplasmic RNA-protein interactions. BioTechniques 27:1032-1042.Google Scholar
  167. 167.
    Wang, W., Furneaux, H., Caldwell, M. C., Hutter, D., Liu, Y., Holbrook, N., and Gorospe, M. 2000. HuR regulates p21 mRNA stabilization by UV light. Mol. Cell. Biol. 20:760-769.Google Scholar
  168. 168.
    Wang, W., Caldwell, M. C., Lin, S., Furneaux, H., and Gorospe, M. 2000. HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J. 19:2340-2350.Google Scholar
  169. 169.
    Musco, G., Stier, G., Joseph, C., Castiglione Morelli, M. A., Nilges, M., Gibson, T. J., and Pastore, A. 1996. Three-dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome. Cell 85:237-245.Google Scholar
  170. 170.
    St. Johnston, D., Brown, N. H., Gall, J. G., and Jantsch, M. 1992. A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA 89:10979-10983.Google Scholar
  171. 171.
    Nanduri, S., Carpick, B. W., Yang, Y., Williams, B. R., and Qin, J. 1998. Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J. 17:5458-5465.Google Scholar
  172. 172.
    Malter, J. S. 1989. Identification of an AUUUA-specific messenger RNA binding protein. Science 246:664-666.Google Scholar
  173. 173.
    Brewer, G. 1991. An A + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol. Cell. Biol. 11:2460-2466.Google Scholar
  174. 174.
    Bohjanen, P. R., Petryniak, B., June, C. H., Thompson, C. B., and Lindsten, T. 1991. An inducible cytoplasmic factor (AUB) binds selectivity to AUUUA multimers in the 3′ UTR of lymphokine mRNA. Mol. Cell. Biol. 11:3288-3295.Google Scholar
  175. 175.
    Bohjanen, P. R., Petryniak, B., June, C. H., Thompson, C. B., and Lindsten, T. 1992. AU RNA-binding factors differ in their binding specificities and affinities. J. Biol. Chem. 267:6302-6309.Google Scholar
  176. 176.
    Levine, T. D., Gao, F., King, P. H., Andrews, L. G., and Keene, J. D. 1993. He1-N1: an autoimmune RNA-binding protein with specificity for 3′ uriylate-rich untranslated regions of growth factor mRNAs. Mol. Cell. Biol. 13:3494-3504.Google Scholar
  177. 177.
    Hamilton, B. J., Nagy, E., Malter, J. S., Arrick, B. A., and Rigby, W. F. 1993. Association of heterogeneous nuclear ribonucleoprotein A1 and C proteins with reiterated AUUUA sequences. J. Biol. Chem. 268:8881-8887.Google Scholar
  178. 178.
    Myer, V. E. and Steitz, J. A. 1995. Isolation and characterization of a novel, low abundance hnRNP protein-A0. RNA 1:171-182.Google Scholar
  179. 179.
    Nakagawa, J., Waldner, H., Meyermonard, S., Hofsteenge, J., Jeno, P., and Moroni, C. 1995. AUH, a gene encoding an AU-specific RNA binding protein with intrinsic enoyl-CoA hydratase activity. Proc. Natl. Acad. Sci. USA 92:2051-2055.Google Scholar
  180. 180.
    Nagy, E. and Rigby, W. F. 1995. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD(+)-binding region (Rossmann fold). J. Biol. Chem. 270:2755-2763.Google Scholar
  181. 181.
    Ma, W. J., Cheng, S., Campbell, C., Wright, A., and Furneaux, H. 1996. Cloning and characterization of HuR, a ubiquitously expressed ELAV-like protein. J. Biol. Chem. 271:8144-8151.Google Scholar
  182. 182.
    Myer, V. E., Fan, X. H. C., and Steitz, J. A. 1997. Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay. EMBO J. 16:2130-2139.Google Scholar
  183. 183.
    Chung, S., Jiang, L., Cheng, S., and Furneaux, H. 1996. Purification and properties of HuD, a neuronal RNA-binding protein. J. Biol. Chem. 271:11518-11524.Google Scholar
  184. 184.
    Carballo, E., Lai, W. S., and Blackshear, P. J. 1998. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281:1001-1005.Google Scholar
  185. 185.
    Gueydan, C., Droogmans, L., Chalon, P., Huez, G., Caput, D., and Kruys, V. 1999. Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA. J. Biol. Chem. 274:2322-2326.Google Scholar
  186. 186.
    Sakai, K., Kitagawa, Y., and Hirose, G. 1999. Analysis of the RNA recognition motifs of human neuronal ELAV-like proteins in binding to a cytokine mRNA. Biochem. Biophys. Res. Commun. 256:263-268.Google Scholar
  187. 187.
    Wilson, G. M., Sutphen, K., Bolikal, S., Chuang, K. Y., and Brewer, G. 2001. Thermodynamics and kinetics of Hsp70 association with A + U-rich mRNA-destabilizing sequences. J. Biol. Chem. 276:44450-44456.Google Scholar
  188. 188.
    Brewer, G. and Ross, J. 1989. Regulation of c-myc mRNA stability in vitro by a labile destabilizer with an essential nucleic acid component. Mol. Cell. Biol. 9:1996-2006.Google Scholar
  189. 189.
    Wagner, B. J., Demaria, C. T., Sun, Y., Wilson, G. M., and Brewer, G. 1998. Structure and genomic organization of the human AUF1 gene-alternative pre-mRNA splicing generates four protein isoforms. Genomics 48:195-202.Google Scholar
  190. 190.
    Zhang, W., Wagner, B. J., Ehrenman, K., Schaefer, A. W., DeMaria, C. T., Carter, D., Dehaven, C., Long, L., and Brewer, G. 1993. Purification, characterization, and cDNA cloning of an Au-rich element RNA-binding protein, AUF1. Mol. Cell. Biol. 13:7652-7665.Google Scholar
  191. 191.
    DeMaria, C. T. and Brewer, G. 1996. AUF1 binding activity to A + U rich elements correlates with rapid mRNA degradation. J. Biol. Chem. 271:12179-12184.Google Scholar
  192. 192.
    Wagner, B. J., Long, L., Rao, P. N., Pettenati, M. J., and Brewer, G. 1996. Localization and physical mapping of genes encoding the A + U-rich element RNA-binding protein AUF1 to human chromosomes 4 and X. Genomics 34:219-222.Google Scholar
  193. 193.
    Xu, N. H., Chen, C. Y. A., and Shyu, A. B. 2001. Versatile role for hnRNP D isoforms in the differential regulation of cytoplasmic mRNA turnover. Mol. Cell Biol. 21:6960-6971.Google Scholar
  194. 194.
    Grosset, C., Chen, C.-Y., Xu, N., Sonenburg, N., Jacquemin-Sablon, H., and Shyu, A.-B. 2000. A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell. 103:29-40.Google Scholar
  195. 195.
    Pande, A., Tremmel, K. D., Demaria, C. T., Blaxall, B. C., Minobe, W. A., Sherman, J. A., Bisognano, J. D., Bristow, M. R., Brewer, G., and Port, J. D. 1996. Regulation of the mRNAbinding protein AUF1 by activation of the β-adrenergic receptor signal transduction pathway. J. Biol. Chem. 271:8493-8501.Google Scholar
  196. 196.
    Kiledjian, M., DeMaria, C. T., Brewer, G., and Novick, K. 1997. Identification of AUF1 (heterogeneous nuclear ribonucleoprotein D) as a component of the α-globin mRNA stability complex. Mol. Cell Biol. 17:4870-4876.Google Scholar
  197. 197.
    Sirenko, O. I., Lofquist, A. K., DeMaria, C. T., Morris, J. S., Brewer, G., and Haskill, J. S. 1997. Adhesion-dependent regulation of an A + U-rich element-binding activity associated with AUF1. Mol. Cell Biol. 17:3898-3906.Google Scholar
  198. 198.
    Wang, X. Y., Hoyle, P. E., and McCubrey, J. A. 1998. Characterization of proteins binding the 3′ regulatory region of the IL-3 gene in IL-3-dependent and autocrine-transformed hematopoietic cells. Leukemia 12:520-531.Google Scholar
  199. 199.
    Pende, A., Giacche, M., Castigliola, L., Contini, L., Passerone, G., Patrone, M., Port, J. D., and Lotti, G. 1999. Characterization of the binding of the RNA-binding protein AUF1 to the human AT(1) receptor mRNA. Biochem. Biophys. Res. Commun. 266:609-614.Google Scholar
  200. 200.
    Sela-Brown, A., Silver, J., Brewer, G., and Naveh-Many, T. 2000. Identification of AUF1 as a parathyroid hormone mRNA 3′-untranslated region-binding protein that determines parathyroid hormone mRNA stability. J. Biol. Chem. 275:7424-7429.Google Scholar
  201. 201.
    Lin, S. K., Wang, W. G., Wilson, G. M., Yang, X. L., Brewer, G., Holbrook, N. J., and Gorospe, M. 2000. Down-regulation of cyclin D1 expression by prostaglandin A(2) is mediated by enhanced cyclin D1 mRNA turnover. Mol. Cell Biol. 20:7903-7913.Google Scholar
  202. 202.
    Wilson, G. M., Sutphen, K., Chuang, K. Y., and Brewer, G. 2001. Folding of A+U-rich RNA elements modulates AUF1 binding: Protein roles in regulation of mRNA turnover. J. Biol. Chem. 276:8695-8704.Google Scholar
  203. 203.
    Tolnay, M., Barany, L., and Tsokos, G. C. 2000. Heterogeneous nuclear ribonucleoprotein DO contains transactivator and DNA-binding domains. Biochem. J. 348:151-158.Google Scholar
  204. 204.
    Eversole, A. and Maizels, N. 2000. In vitro properties of the conserved mammalian protein hnRNP D suggest a role in telomere maintenance. Mol. Cell Biol. 20:5425-5432.Google Scholar
  205. 205.
    Dempsey, L. A., Hanakahi, L. A., and Maizels, N. 1998. A specific isoform of hnRNP D interacts with DNA in the LR1 heterodimer: canonical RNA binding motifs in a sequence-specific duplex DNA binding protein. J. Biol. Chem. 273:29224-29229.Google Scholar
  206. 206.
    Nagata, T., Kurihara, Y., Matsuda, G., Saeki, J., Kohno, T., and Yanagida, Y. 1999. Structure and interaction with RNA of the N-terminal UUAG-specific RNA-binding domain of hnRNP Do. J. Mol. Biol. 287:221-237.Google Scholar
  207. 207.
    Katahira, M., Miyanoiri, Y., Enokizono, Y., Matsuda, G., Nagata, T., Ishikawa, F., and Uesugi, S. 2001. Structure of the Cterminal RNA-binding domain of hnRNP DO (AUF1), its interactions with RNA and DNA, and change in backbone dynamics upon complex formation with DNA. J. Mol. Biol. 311:973-988.Google Scholar
  208. 208.
    DeMaria, C. T., Sun, Y., Long, L., Wagner, B. J., and Brewer, G. 1997. Structural determinants in AUF1 required for high affinity binding to A + U-rich elements. J. Biol. Chem. 272:27635-27643.Google Scholar
  209. 209.
    Wilson, G. M., Sun, Y., Lu, H. P., and Brewer, G. 1999. Assembly of AUF1 oligomers on U-rich RNA targets by sequential dimer association. J. Biol. Chem. 274:33374-33381.Google Scholar
  210. 210.
    Holcik, M. and Liebhaber, S. A. 1997. Four highly stable eukaryotic mRNAs assemble 3′ untranslated region RNA-protein complexes sharing cis and trans components. Proc. Natl. Acad. Sci. USA 94:2410-2414.Google Scholar
  211. 211.
    Chkheidze, A. N., Lyakhov, D. L., Makeyev, A. V., Morales, J., Kong, J., and Liebhaber, S. A. 2001. Assembly of the α-globin mRNA stability complex reflects binary interaction between the pyrimidine-rich 3′ untranslated region determinant and poly(C) binding αCP. Mol. Cell. Biol. 19:4572-4581.Google Scholar
  212. 212.
    Lai, W. S., Carballo, E., Strum, J. R., Kennington, E. A., Phillips, R. S., and Blackshear, P. J. 1999. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol. Cell Biol. 19:4311-4323.Google Scholar
  213. 213.
    Taylor, G. A., Thompson, M. J., Lai, W. S., and Blackshear, P. J. 1996. Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc-finger transcription factor. Mol. Endocrinol. 10:140-146.Google Scholar
  214. 214.
    Taylor, G. A., Thompson, M. J., Lai, W. S., and Blackshear, P. J. 1995. Phosphorylation of tristetraprolin, a potential zinc finger transcription factor, by mitogen stimulation in intact cells and by mitogen-activated protein kinase in vitro. J. Biol. Chem. 270:13341-13347.Google Scholar
  215. 215.
    Taylor, G. A., Carballo, E., Lee, D. M., Lai, W. S., Thompson, M. J., Patel, D. D., Schenkman, D. I., Gilkeson, G. S., Broxmeyer, H. E., Haynes, B. F., and Blackshear, P. J. 1996. A pathogenetic role for TNF-alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4:445-454.Google Scholar
  216. 216.
    Raghavan, A., Robison, R. L., McNabb, J., Miller, C. R., Williams, D. A., and Bohjanen, P. R. 2001. HuA and tristetraprolin are induced following T cell activation and display distinct but overlapping RNA binding specificities. J. Biol. Chem. 276:47958-47965.Google Scholar
  217. 217.
    Lai, W. S. and Blackshear, P. J. 2001. Interactions of CCCH zinc finger proteins with mRNA-tristetraprolin-mediated AU-rich element-dependent mRNA degradation can occur in the absence of a poly(A) tail. J. Biol. Chem. 276:23144-23154.Google Scholar
  218. 218.
    Stoecklin, G., Ming, X. F., Looser, R., and Moroni, C. 2000. Somatic mRNA turnover mutants implicate tristetraprolin in the interleukin-3 mRNA degradation pathway. Mol. Cell Biol. 20:3753-3763.Google Scholar
  219. 219.
    Mahtani, K. R., Brook, M., Dean, J. L. E., Sully, G., Saklatvala, J., and Clark, A. R. 2001. Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol. Cell Biol. 21:6461-6469.Google Scholar
  220. 220.
    Ming, X. F., Stoecklin, G., Lu, M., Looser, R., and Moroni, C. 2001. Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol. Cell Biol. 21:5778-5789.Google Scholar
  221. 221.
    Zhu, W., Brauchle, M. A., Di Padova, F., Gram, H., New, L., Ono, K., Downey, J. S., and Han, J. H. 2001. Gene suppression by tristetraprolin and release by the p38 pathway. Am. J. Physiol. 281:L499-L508.Google Scholar
  222. 222.
    Johnson, B. A., Geha, M., and Blackwell, T. K. 2000. Similar but distinct effects of the tristetraprolin/TIS11 immediateearly proteins on cell survival. Oncogene 19:1657-1664.Google Scholar
  223. 223.
    Posner, J. B. and Furneaux, H. M. 1990. Paraneoplastic syndromes. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 68:187-219.Google Scholar
  224. 224.
    Darnell, R. B., Furneaux, H. M., and Posner, J. B. 1991. Antiserum from a patient with cerebellar degeneration identifies a novel protein in Purkinje cells, cortical neurons, and neuroectodermal tumors. J. Neurosci. 11:1224-1230.Google Scholar
  225. 225.
    Ball, N. S. and King, P. H. 1997. Neuron-specific Hel-N1 and HuD as novel molecular markers of neuroblastoma: a correlation of HuD messenger RNA levels with favorable prognostic features. Clin. Cancer Res. 3:1859-1865.Google Scholar
  226. 226.
    Dalmau, J., Furneaux, H. M., Cordon-Cardo, C., and Posner, J. B. 1992. The expression of the Hu (paraneoplastic encephalomyelitis/sensory neuronopathy) antigen in human normal and tumor tissues. Am. J. Pathol. 141:881-886.Google Scholar
  227. 227.
    Manley, G. T., Smitt, P. S., Dalmau, J., and Posner, J. B. 1995. Hu antigens: reactivity with Hu antibodies, tumor expression, and major immunogenic sites. Ann. Neurol. 38:102-110.Google Scholar
  228. 228.
    Dalmau, J., Furneaux, H. M., Rosenblum, M. K., Graus, F., and Posner, J. B. 1991. Detection of the anti-Hu antibody in specific regions of the nervous system and tumor from patients with paraneoplastic encephalomyelitis/sensory neuropathy. Neurology 41:1757-1764.Google Scholar
  229. 229.
    Campos, A. R., Grossman, D., and White, K. 1985. Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A developmental-genetic analysis. J. Neurogenet. 2:197-218.Google Scholar
  230. 230.
    Robinow, S. and White, K. 1988. The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. Dev. Biol. 126:294-303.Google Scholar
  231. 231.
    Yao, K. M., Samson, M. L., Reeves, R., and White, K. 1993. Gene elav of Drosophila melanogaster: a prototype for neuronal-specific RNA binding protein gene family that is conserved in flies and humans. J. Nuerobiol. 24:723-739.Google Scholar
  232. 232.
    Sakai, K., Gofuku, M., Kitagawa, Y., Ogasawara, T., Hirose, G., Yamazaki, M., Koh, C. S., Yanagisawa, N., and Steinman, L. 1994. A hippocampal protein associated with paraneoplastic neurologic syndrome and small cell lung carcinoma. Biochem. Biophys. Res. Commun. 199:1200-1208.Google Scholar
  233. 233.
    Szabo, A., Dalmau, J., Manley, G., Rosenfeld, M., Wong, E., Henson, J., Posner, J. B., and Furneaux, H. M. 1991. HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 67:325-333.Google Scholar
  234. 234.
    Okano, H. J. and Darnell, R. B. 1997. A hierarchy of Hu RNA binding proteins in developing and adult neurons. J. Neurosci. 17:3024-3037.Google Scholar
  235. 235.
    Gao, F. B. and Keene, J. D. 1996. Hel-N1/Hel-N2 proteins are bound to poly(A)+ mRNA in granular RNP structures and are implicated in neuronal differentiation. J. Cell Sci. 109:579-589.Google Scholar
  236. 236.
    Good, P. J. 1997. The role of elav-like genes, a conserved family encoding RNA-binding proteins, in growth and development. Semin. Cell. Dev. Biol. 8:577-584.Google Scholar
  237. 237.
    Liu, J., Dalmau, J., Szabo, A., Rosenfeld, M., Huber, J., and Furneaux, H. 1995. Paraneoplastic encephalomyelitis antigens bind to the AU-rich elements of mRNA. Neurology 45:544-550.Google Scholar
  238. 238.
    Chung, S., Eckrich, M., Perrone-Bizzozero, N., Kohn, D. T., and Furneaux, H. 1997. The Elav-like proteins bind to a conserved regulatory element in the 3′-untranslated region of GAP-43 mRNA. J. Biol. Chem. 272:6593-6598.Google Scholar
  239. 239.
    Gao, F. B., Carson, C. C., Levine, T., and Keene, J. D. 1994. Selection of a subset of mRNAs from combinatorial 3′ untranslated region libraries using neuronal RNA-binding protein Hel-N1. Proc. Natl. Acad. Sci. USA 91:11207-11211.Google Scholar
  240. 240.
    Antic, D., Lu, N., and Keene, J. D. 1999. ELAV tumor antigen, Hel-N1, increases translation of neurofilament M mRNA and induces formation of neurites in human teratocarcinoma cells. Genes Dev. 13:449-461.Google Scholar
  241. 241.
    Yeap, B. B., Voon, D. C., Vivian, J. P., McCulloch, R., Thomson, A. M., Giles, K., Czyzyk-Krzeska, M. F., Furneaux, H., Wilce, M. C. J., Wilce, J. A., and Leedman, P. J. 2002. Novel binding of HuR and poly(C) binding protein to a conserved UC-rich motif within the 3′ untranslated region of the androgen receptor. J. Biol. Chem. 277:27183-27192.Google Scholar
  242. 242.
    Jain, R. G., Andrews, L. G., McGowan, K. M., Gao, F., Keene, J. D., and Pekala, P. P. 1995. Hel-N1, an RNA-binding protein, is a ligand for an A + U rich region of the GLUT1 3′ UTR. Nucleic Acids Symp. Ser. 33:209-211.Google Scholar
  243. 243.
    Ma, W. J., Chung, S., and Furneaux, H. 1997. The Elav-like proteins bind to AU-rich elements and to the poly(A) tail of mRNA. Nucleic Acids Res. 25:3564-3569.Google Scholar
  244. 244.
    Nabors, L. B., Gillespie, G. Y., Harkins, L., and King, P. H. 2001. HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine-and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res. 61:2154-2161.Google Scholar
  245. 245.
    Levy, N. S., Chung, S., Furneaux, H., and Levy, A. P. 1998. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J. Biol. Chem. 273:6417-6423.Google Scholar
  246. 246.
    Maurer, F., Tierney, M., and Medcalf, R. L. 1999. An AU-rich sequence in the 3′-UTR of plasminogen activator inhibitor type 2 (PAI-2) mRNA promotes PAI-2 mRNA decay and provides a binding site for nuclear HuR. Nucleic Acids Res. 27:1664-1673.Google Scholar
  247. 247.
    Aranda-Abreu, G. E., Behar, L., Chung, S., Furneaux, H., and Ginzburg, I. 1999. Embryonic lethal abnormal vision-like RNA-binding proteins regulate neurite outgrowth and tau expression in PC12 cells. J. Neurosci. 19:6907-6917.Google Scholar
  248. 248.
    Blaxall, B. C., Pellett, A. C., Wu, S. C., Pende, A., and Port, J. D. 2000. Purification and characterization of beta-adrenergic receptor mRNA-binding proteins. J. Biol. Chem. 275:4290-4297.Google Scholar
  249. 249.
    Millard, S. S., Vidal, A., Markus, M., and Koff, A. 2000. A Urich element in the 5′ untranslated region is necessary for the translation of p27 mRNA. Mol. Cell. Biol. 20:5947-5959.Google Scholar
  250. 250.
    Joseph, B., Orlian, M., and Furneaux, H. 1998. p21(waf1) mRNA contains a conserved element in its 3′-untranslated region that is bound by the Elav-like mRNA-stabilizing proteins. J. Biol. Chem. 273:20511-20516.Google Scholar
  251. 251.
    Haeussler, J., Haeusler, J., Striebel, A. M., Assum, G., Vogel, W., Furneaux, H., and Krone, W. 2000. Tumor antigen HuR binds specifically to one of five protein-binding segments in the 3′-untranslated region of the neurofibromin messenger RNA. Biochem. Biophys. Res. Commun. 267:726-732.Google Scholar
  252. 252.
    Rodriguez-Pascual, F., Hausding, M., Ihrig-Biedert, I., Furneaux, H., Levy, A. P., Forstermann, U., and Kleinert, H. 2000. Complex contribution of the 3′-untranslated region to the expressional regulation of the human inducible nitric-oxide synthase gene. Involvement of the RNA-binding protein HuR. J. Biol. Chem. 275:26040-26049.Google Scholar
  253. 253.
    Loflin, P. and Lever, J. E. 2001. HuR binds a cyclic nucleotide-dependent, stabilizing domain in the 3′ untranslated region of Na(+)/glucose cotransporter (SGLT1) mRNA. FEBS Lett. 509:267-271.Google Scholar
  254. 254.
    Abe, R., Sakashita, E., Yamamoto, K., and Sakamoto, H. 1996. Two different RNA binding activities for the AU-rich element and the poly(A) sequence of the mouse neuronal protein mHuC. Nucleic Acids Res. 24:4895-4901.Google Scholar
  255. 255.
    Fan, X. C. and Steitz, J. A. 1998. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17:3448-3460.Google Scholar
  256. 256.
    Fan, X. C., Myer, V. E., and Steitz, J. A. 1997. AU-rich elements target small nuclear RNAs as well as mRNAs for rapid degradation. Genes Dev. 11:2557-2568.Google Scholar
  257. 257.
    Peng, S. S., Chen, C. Y., Xu, N., and Shyu, A. B. 1998. RNA stabilization by the AU-rich element binding protein, HuR, and ELAV protein. EMBO J. 17:3461-3470.Google Scholar
  258. 258.
    Gallouzi, I. E., Brennan, C. M., Stenberg, M. G., Swanson, M. S., Eversole, A., Maizels, N., and Steitz, J. A. 2000. HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc. Natl. Acad. Sci. USA 97:3073-3078.Google Scholar
  259. 259.
    Jain, R. G., Andrews, L. G., McGowan, K. M., Pekala, P. H., and Keene, J. D. 1997. Ectopic expression of Hel-N1, an RNA-binding protein, increases glucose transporter (GLUT1) expression in 3T3-L1 adipocytes. Mol. Cell Biol. 17:954-962.Google Scholar
  260. 260.
    Brennan, C. M., Gallouzi, I. E., and Steitz, J. A. 2000. Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J. Cell Biol. 151:1-14.Google Scholar
  261. 261.
    Keene, J. D. 1999. Why is Hu where? Shuttling of earlyresponse-gene messenger RNA subsets. Proc. Natl. Acad. Sci. USA 96:5-7.Google Scholar
  262. 262.
    Brennan, C. M. and Steitz, J. A. 2001. HuR and mRNA stability. Cell Mol. Life Sci. 58:266-277.Google Scholar
  263. 263.
    Akamatsu, W., Okano, H. J., Osumi, N., Inoue, T., Nakamura, S., Sakakibara, S., Miura, M., Matsuo, N., Darnell, R. B., and Okano, H. 1999. Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. Proc. Natl. Acad. Sci. USA 96:9885-9890.Google Scholar
  264. 264.
    Kasashima, K., Terashima, K., Yamamoto, K., Sakashita, E., and Sakamoto, H. 1999. Cytoplasmic localization is required for the mammalian ELAV-like protein HuD to induce neuronal differentiation. Genes Cells 4:667-683.Google Scholar
  265. 265.
    Wakamatsu, Y. and Weston, J. A. 1997. Sequential expression and role of Hu RNA-binding proteins during neurogenesis. Development 124:3449-3460.Google Scholar
  266. 266.
    Dobashi, Y., Shoji, M., Wakata, Y., and Kameya, T. 1998. Expression of HuD protein is essential for initial phase of neuronal differentiation in rat pheochromocytoma PC12 cells. Biochem. Biophys. Res. Commun. 244:226-229.Google Scholar
  267. 267.
    Quattrone, A., Pascale, A., Nogues, X., Zhao, W., Gusev, P., Pacini, A., and Alkon, D. L. 2001. Posttranscriptional regulation of gene expression in learning by the neuronal ELAV-like mRNA-stabilizing proteins. Proc. Natl. Acad. Sci. USA 98:11668-11673.Google Scholar
  268. 268.
    Aarts, L. H., Schotman, P., Verhaagen, J., Schrama, L. H., and Gispen, W. H. 1998. The role of the neural growth associated protein B-50/GAP-43 in morphogenesis. Adv. Exp. Med. Biol. 446:85-106.Google Scholar
  269. 269.
    Hentze, M. W. and Kuhn, L. C. 1996. Molecular control of vertebrate iron metabolism-mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. USA 93:8175-8182.Google Scholar
  270. 270.
    Miller, K., Shipman, M., Trowbridge, I. S., and Hopkins, C. R. 1991. Transferrin receptors promote formation of clathrin lattices. Cell 65:621-631.Google Scholar
  271. 271.
    Andrews, N. C. and Levy, J. 1998. Iron is hot: an update on the pathophysiology of hemachromatosis. Blood 92:1845-1851.Google Scholar
  272. 272.
    de Silva, D. M. and Aust, S. D. 1993. Ferritin and ceruloplasmin in oxidative damage: review and recent findings. Can. J. Physiol. Pharmacol. 71:715-720.Google Scholar
  273. 273.
    Ponka, P. 1997. Tissue specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood 89:1-25.Google Scholar
  274. 274.
    Muckenthaler, M., Gunkel, N., Frishman, D., Cyrklaff, A., Tomancak, P., and Hentze, M. W. 1998. Iron-regulatory protein-1 (IRP-1) is highly conserved in two invertebrate species-characterization of IRP-1 homologues in Drosophila melanogaster and Caenorhabditis elegans. Eur. J. Biochem. 254:230-237.Google Scholar
  275. 275.
    Cox, T. C., Bawden, M. J., Martin, A., and May, B. K. 1991. Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA. EMBO J. 10:1891-1902.Google Scholar
  276. 276.
    Gray, N. K., Pantopoulous, K., Dandekar, T., Ackrell, B. A., and Hentze, M. W. 1996. Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements. Proc. Natl. Acad. Sci. USA 93:4925-4930.Google Scholar
  277. 277.
    Kohler, S. A., Henderson, B. R., and Kuhn, L. C. 1995. Succinate dehydrogenase b mRNA of Drosophila melanogaster has a functional iron-responsive element in its 5′-untranslate region. J. Biol. Chem. 270:30781-30786.Google Scholar
  278. 278.
    Phillips, J. D., Kinikini, D. V., Yu, Y., Guo, B., and Leibold, E. A. 1996. Differential regulation of IRP1 and IRP2 by nitric oxide in rat hepatoma cells. Blood 87:2983-2992.Google Scholar
  279. 279.
    La Vaute, T., Smith, S., Cooperman, S., Iwai, K., Land, W., Meyron-Holtz, E., Drake, S. K., Miller, G., Abu-Asab, M., Tsokos, M., III, Grinberg, A., Love, P., Tresser, N., and Rouault, T. A. 2001. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat. Genet. 27:209-214.Google Scholar
  280. 280.
    Konijn, A. M. 1994. Iron metabolism in inflammation. Baillieres Clin. Haematol. 7:829-849.Google Scholar
  281. 281.
    Samaniego, F., Chin, J., Iwai, K., Rouault, T. A., and Klausner, R. D. 1994. Molecular characterization of a second iron-responsive element binding protein, iron regulatory protein 2. Structure, function, and post-translational regulation. J. Biol. Chem. 269:30904-30910.Google Scholar
  282. 282.
    Hentze, M. W., Seuanez, H. N., O'Brien, S. J., Harford, J. B., and Klausner, R. D. 1989. Chromosomal localization of nucleic acid-binding proteins by affinity mapping: assignment of the IRE-binding protein gene to human chromosome 9. Nucleic Acids Res. 17:6103-6108.Google Scholar
  283. 283.
    Rogers, J. T., Bridges, K. R., Durmowicz, G. P., Glass, J., Auron, P. E., and Munro, H. N. 1990. Translational control during the acute phase response: ferritin synthesis in response to interleukin-1. J. Biol. Chem. 265:14572-14578.Google Scholar
  284. 284.
    Beaumont, C., Leneuve, P., Devaux, I., Scoazec, J. Y., Bertier, M., Loiseau, M. N., Grandchamp, B., and Bonneau, D. 1995. Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nat. Genet. 11:444-446.Google Scholar
  285. 285.
    Rogers, J. T., Andriotakis, J., Lacroix, L., Kasschau, K., Durmowicz, G., and Bridges, K. 1994. Translational enhancement of H-ferritin mRNA by interleukin-1 acts through 5′-leader sequences distinct from the iron-responsive element. Nucleic Acids Res. 22:2678-2686.Google Scholar
  286. 286.
    Menotti, E., Henderson, B. R., and Kuhn, L. C. 1998. Translational regulation of mRNAs with distinct IRE sequences by iron regulatory proteins 1 and 2. J. Biol. Chem. 273:1821-1824.Google Scholar
  287. 287.
    Girelli, D., Corrocher, R., Bisceglia, L., Olivieri, O., De Franceschi, L., Zelante, L., and Gasparini, P. 1995. Molecular basis for the recently described hereditary hyperferritinemiacataract syndrome: a mutation in the iron-responsive element of ferritin L-subunit gene (the “Verona mutation”). Blood 86:4050-4053.Google Scholar
  288. 288.
    Henderson, B. R., Menotti, E., and Kuhn, L. C. 1996. Iron regulatory proteins 1 and 2 bind distinct sets of RNA target sequences. J. Biol. Chem. 271:4900-4908.Google Scholar
  289. 289.
    Laing, L. G. and Hall, K. B. 1996. A model of the iron responsive element RNA hairpin loop structure determined from NMR and thermodynamic data. Biochemistry 35:13586-13596.Google Scholar
  290. 290.
    Gruer, M. J., Artymiuk, P. J., and Guest, J. R. 1997. The aconitase family: three structural variations on a common theme. Trends Biochem. Sci. 22:3-6.Google Scholar
  291. 291.
    Schalinske, K. L. and Eisenstein, R. S. 1996. Phosphorylation and activation of both iron regulatory proteins 1 and 2 in HL-60 cells. J. Biol. Chem. 271:7168-7176.Google Scholar
  292. 292.
    Hirling, H., Henderson, B. R., and Kuhn, L. C. 1994. Mutational analysis of the [4Fe-4S]-cluster converting iron-regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J. 13:453-461.Google Scholar
  293. 293.
    Schalinske, K. L., Anderson, S. A., Tuazon, P. T., Chen, O. S., Kennedy, M. C., and Eisenstein, R. S. 1997. The iron-sulfur cluster of iron regulatory protein 1 modulates the accessibility of RNA binding and phosphorylation sites. Biochemistry 36:3950-3958.Google Scholar
  294. 294.
    Kuhn, L. C. 1998. Iron and gene expression: molecular mechanisms regulating iron homeostasis. Nutr. Rev. 56:S11-S19.Google Scholar
  295. 295.
    Pantopoulos, K. and Hentze, M. W. 1995. Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J. 14:2917-2924.Google Scholar
  296. 296.
    Guo, B., Yu, Y., and Leibold, E. A. 1994. Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. J. Biol. Chem. 269:24252-24260.Google Scholar
  297. 297.
    Henderson, B. R., Seiser, C., and Kuhn, L. C. 1993. Characterization of a second RNA-binding protein in rodents with specificity for iron-responsive elements. J. Biol. Chem. 268:27327-27334.Google Scholar
  298. 298.
    Iwai, K., Klausner, R. D., and Rouault, T. A. 1995. Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J. 14:5350-5357.Google Scholar
  299. 299.
    Iwai, K., Drake, S. K., Wehr, N. B., Weissman, A. M., La Vaute, T., Minato, N., Klausner, R. D., Devine, R. L., and Rouault, T. A. 1998. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidised proteins. Proc. Natl. Acad. Sci. USA 95:4924-4928.Google Scholar
  300. 300.
    Guo, B., Phillips, J. D., Yu, Y., and Leibold, E. A. 1995. Iron regulates the intracellular degradation of iron-regulatory protein 2 by the proteosome. J. Biol. Chem. 270:6103-6108.Google Scholar
  301. 301.
    Schalinske, K. L., Blemings, K. P., Steffen, D. W., Chen, O. S., and Eisenstein, R. S. 1997. Iron regulatory protein 1 is not required for the modulation of ferritin and transferrin receptor expression by iron in a murine pro-B lymphocyte cell line. Proc. Natl. Acad. Sci. USA 94:10681-10686.Google Scholar
  302. 302.
    Czyzyk-Kreska, M. F. and Bendixen, A. C. 1999. Identification of the poly(C) binding protein in the complex associated with the 3′ untranslated region of erythropoietin messenger RNA. Blood 93:2111-2120.Google Scholar
  303. 303.
    Kiledjian, M., Wang, X. M., and Liebhaber, S. A. 1995. Identification of two KH domain proteins in the α-globin mRNP stability complex. EMBO J. 14:4357-4364.Google Scholar
  304. 304.
    Collier, B., Goobar-Larsson, L., Sokolowski, M., and Schwartz, S. 1998. Translational inhibition in vitro of human papillomavirus type 16 L2 mRNA mediated through interaction with heterogenous ribonucleoprotein K and poly(rC)-binding proteins 1 and 2. J. Biol. Chem. 273:22648-22656.Google Scholar
  305. 305.
    Gamarnik, A. V. and Andino, R. 1997. Two functional complexes formed by KH domain containing protein with the 5′ noncoding region of polio virus RNA. RNA 3:882-892.Google Scholar
  306. 306.
    Ostareck, D. H., Ostareck-lederer, A., Wilm, M., Thiele, B. J., Mann, M., and Hentze, M. W. 1997. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-liopoxygenase translation form the 3′-end. Cell 89:597-606.Google Scholar
  307. 307.
    Siomi, H., Matunis, M. J., Michael, W. M., and Dreyfuss, G. 1993. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res. 21:1193-1198.Google Scholar
  308. 308.
    Preiss, T., Hall, A. G., and Lightowlers, R. N. 1993. Identification of bovine glutamate dehydrogenase as an RNA-binding protein. J. Biol. Chem. 268:24523-24526.Google Scholar
  309. 309.
    Elzinga, S. D., Bednarz, A. L., and van Oosterum, K. 1993. Yeast mitochondrial NAD(+)-dependent isocitrate dehydrogenase is an RNA-binding protein. Nucleic Acids Res. 21:5328-5331.Google Scholar
  310. 310.
    Nagy, E., Henics, T., Eckert, M., Miseta, A., Lightowlers, R. N., and Kellermeyer, M. 2000. Identification of the NAD+-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem. Biophys. Res. Commun. 275:253-260.Google Scholar
  311. 311.
    Chu, E., Koeller, D. M., Casey, J. L., Drake, J. C., Chabner, B. A., Elwood, P. C., Zinn, S., and Allegra, C. J. 1991. Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc. Natl. Acad. Sci. USA 88:8977-8981.Google Scholar
  312. 312.
    Chu, E., Koeller, D. M., Casey, J. L., Drake, J. C., Chabner, B. A., Elwood, P. C., and Zinn, S. 1993. Specific binding of human dihydrofolate reductase protein to dihydrofolate reductase messenger RNA in vitro. Biochemistry 32:4756-4760.Google Scholar
  313. 313.
    Clerch, L. B., Wagner, A., and Massaro, D. 1993. FASEB J. 7:A1233.Google Scholar
  314. 314.
    Nanbu, R., Kubo, T., and Natori, S. 1993. Purification of an AU-rich RNA binding protein from Sarcophaga peregrina (flesh fly) and its identification as a thiolase. J. Biochem. 114:432-437.Google Scholar
  315. 315.
    Hollis, G. F., Gazdar, A. F., Bertness, V., and Kirsch, I. R. 1988. Complex translocation disrupts c-myc regulation in a human plasma cell myeloma. Mol. Cell Biol. 8:124-129.Google Scholar
  316. 316.
    Aghib, D. F., Bishop, J. M., Ottolenghi, S., Guerrasio, A., Serra, A., and Saglio, G. 1990. A 3′ truncation of MYC caused by chromosomal translocation in a human T-cell leukemia increases mRNA stability. Oncogene 5:707-711.Google Scholar
  317. 317.
    Schuler, G. D. and Cole, M. D. 1988. GM-CSF and oncogene mRNA stabilities are independently regulated in trans in a mouse monocytic tumour. Cell 55:1115-1122.Google Scholar
  318. 318.
    Ross, H. J., Sato, N., Ueyama, Y., and Koeffler, H. P. 1991. Cytokine messenger RNA stability is enhanced in tumor cells. Blood 77:1787-1795.Google Scholar
  319. 319.
    Lasa, M., Mahtani, K. R., Finch, A., Brewer, G., Saklatvala, J., and Clark, A. R. 2000. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol. Cell Biol. 20:4265-4274.Google Scholar
  320. 320.
    Rimokh, R., Berger, F., Bastard, C., Klein, B., French, M., Archimbaud, E., Rouault, J. P., Santa Lucia, B., Duret, L., and Vuillaume, M. 1994. Rearrangement of CCND1 (BCL1/PRAD1) 3′ untranslated region in mantle-cell lymphomas and t(11q13)-associated leukemias. Blood 83:3689-3696.Google Scholar
  321. 321.
    Vassalli, P. 1992. The pathophysiology of tumour necrosis factors. Annu. Rev. Immunol. 10:411-452.Google Scholar
  322. 322.
    Elliott, M. J., Maini, R. N., Feldmann, M., Long-Fox, A., Charles, P., Bijl, H., and Woody, J. N. 1994. Repeated therapy with monoclonal antibody to tumour necrosis factor alpha (cA2) in patients with rheumatoid arthritis. Lancet 344:1125-1127.Google Scholar
  323. 323.
    Dean, J. L. E., Wait, R., Mahtani, K. R., Sully, G., Clark, A. R., and Saklatvala, J. 2001. The 3′ untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNAstabilizing factor HuR. Mol. Cell Biol. 21:721-730.Google Scholar
  324. 324.
    Di Marco, S., Hel, Z., Lachance, C., Furneaux, H., and Radzioch, D. 2001. Polymorphism in the 3′-untranslated region of TNF alpha mRNA impairs binding of the posttranscriptional regulatory protein HuR to TNF alpha mRNA. Nucleic Acids Res. 29:863-871.Google Scholar
  325. 325.
    Weiss, I. M. and Liebhaber, S. A. 1995. Erythroid cell-specific mRNA stability elements in α-globin 3′ untranslated region. Mol. Cell Biol. 15:2457-2465.Google Scholar
  326. 326.
    Morales, L., Russell, J. E., and Liebhaber, S. A. 1997. Destabilization of human alpha-globin mRNA by translation antitermination is controlled during erythroid differentiation and is paralleled by phased shortening of the poly(A) tail. J. Biol. Chem. 272:6607-6613.Google Scholar
  327. 327.
    Beard, J. L., Connor, J. R., and Jones, B. C. 1993. Iron in the brain. Nutr. Rev. 51:157-170.Google Scholar
  328. 328.
    Loeffler, D. A., Connor, J. R., Juneau, P. L., Snyder, B. S., Kanaley, L., deMaggio, A. J., Nygen, H., Brickamn, C. M., and LeWitt, P. A. 1995. Transferrin and iron in normal, Alzheimer's disease and Parkinson's disease brain regions. J. Neurochem. 65:710-716.Google Scholar
  329. 329.
    La Vaute, T., Smith, S., Cooperman, S., Iwai, K., Land, W., Meyron-Holtz, E., Drake, S. K., Miller, G., Abu-Asab, M., Tsokos, M., Switzer, R., III, Grinberg, A., Love, P., Tresser, N., and Rouault, T. A. 2001. Targeted deletion of the encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat. Genet. 27:209-214.Google Scholar
  330. 330.
    Smith, M. A., Wehr, K., Harris, P. L., Siedlak, S. L., Connor, J. R., and Perry, G. 1998. Abnormal localization of iron regulatory protein in Alzheimer's disease. Brain Res. 788:232-236.Google Scholar
  331. 331.
    Pinero, D. J., Hu, J., and Connor, J. R. 2000. Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer's diseased brains. Cell Mol. Biol. 46:761-776.Google Scholar
  332. 332.
    Doyle, G. A., Betz, N. A., Leeds, P. F., Fleisig, A. J., Prokipcak, R. D., and Ross, J. 1998. The c-myc coding region determinant-binding protein: a member of a family of KH domain RNA-binding proteins. Nucleic Acids Res. 26:5036-5044.Google Scholar
  333. 333.
    Doyle, G. A., Bourdeau-Heller, J. M., Coulthard, S., Meisner, L. F., and Ross, J. 2000. Amplification in human breast cancer of a gene encoding a c-myc mRNA-binding protein. Cancer Res. 60:2756-2759.Google Scholar
  334. 334.
    Ross, J., Lemm, I., and Berberet, B. 2001. Overexpression of an mRNA-binding protein in human colorectal cancer. Oncogene 20:6544-6550.Google Scholar
  335. 335.
    Toda, M., Iizuka, Y., Yu, W., Imai, T., Ikeda, E., Yoshida, K., Kawase, T., Kawakami, Y., Okano, H., and Uyemura, K. 2001. Expression of the neural RNA-binding protein Musashi1 in human gliomas. Glia 34:1-7.Google Scholar
  336. 336.
    Carpentier, A. F., Rosenfeld, M. R., Delattre, J. Y., Whalen, R. G., Posner, J. B., and Dalmau, J. 1998. DNA vaccination with HuD inhibits growth of a neuroblastoma in mice. Clin. Cancer Res. 4:2819-2824.Google Scholar
  337. 337.
    Kennedy, D., Wood, S. A., Ramsdale, T., Tam, P. P., Steiner, K. A., and Mattick, J. S. 1996. Identification of a mouse orthologue of the human ras-GAP-SH3-domain binding protein and structural confirmation that these proteins contain an RNA recognition motif. Biomed. Pept. Proteins Nucleic Acids 2:93-99.Google Scholar
  338. 338.
    Guitard, E., Parker, F., Millon, R., Abecassis, J., and Tocque, B. 2001. G3BP is overexpressed in human tumors and promotes S phase entry. Cancer Lett. 162:213-221.Google Scholar
  339. 339.
    Lu, M., Nakamura, R. M., Dent, E. D., Zhang, J. Y., Nielsen, F. C., Christiansen, J., Chan, E. K., and Tan, E. M. 2001. Aberrant expression of fetal RNA-binding protein p62 in liver cancer and liver cirrhosis. Am. J. Pathol. 159:945-953.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Elysia M. Hollams
    • 1
  • Keith M. Giles
    • 1
  • Andrew M. Thomson
    • 1
  • Peter J. Leedman
    • 2
  1. 1.Laboratory for Cancer Medicine and University Department of MedicineWestern Australian Institute for Medical Research and University of Western AustraliaPerthAustralia
  2. 2.Laboratory for Cancer Medicine and University Department of MedicineWestern Australian Institute for Medical Research and University of Western AustraliaPerthAustralia

Personalised recommendations