Chromosome Research

, Volume 10, Issue 6, pp 477–497 | Cite as

A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families

  • M. Volleth
  • K.-G. Heller
  • R.A. Pfeiffer
  • H. Hameister


Fluorescence in-situ hybridization with human whole chromosome painting probes (WCPs) was applied to compare the karyotypes of members of five bat families. Twenty-five evolutionarily conserved units (ECUs) were identified by ZOO-FISH analysis. In 10 of these 25 ECUs, thorough GTG-band comparison revealed an identical banding pattern in all families studied. Differences in the remaining ECUs were used as characters to judge the phylogenetic relationships within Chiroptera. Close relations hips were found between Rhinolophidae and Hipposideridae. Also closely related are the representatives of the yangochiropteran families Phyllostomidae (genus studied: Glossophaga, Volleth et al. 1999), Molossidae and Vespertilionidae. All microchiropteran species studied here share four common features not found in the megachiropteran species Eonycteris spelaea. Two of these are considered as derived characters with a high probability of parallel evolution. On the other hand, Eonycteris shares one common, probably derived feature with the rhinolophoid families Rhinolophidae and Hipposideridae and an additional one only with Hipposideridae. At the moment, the relationships between Yangochiroptera, Rhinolophoidea and Megachiroptera must be left in an unsolved trichotomy. Comparison of neighboring segment combinations found in Chiroptera with those found in other mammalian taxa revealed six synapomorphic features for Chiroptera. Therefore, for karyological reasons, monophyly of Chiroptera is strongly supported.

Chiroptera chromosome painting cytotaxonomy fluorescence in-situ hybridization phylogenetic relationship 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker RJ, Bass RA (1979) Evolutionary relationships of the Phyllonycterinae to the glossophagine genera Glossophaga and Monophyllus. J Mammal 60: 364-372.Google Scholar
  2. Baker RJ, Honeycutt RL, Bass RA (1988) Genetics. In: Greenhall AM, Schmidt U, eds. Natural History of Vampire Bats. Boca Raton, Florida: CRC Press, pp 31-40.Google Scholar
  3. Baker RJ, Hood CS, Honeycutt RL (1989) Phylogenetic relationships and classification of the higher categories of the New World bat family Phyllostomidae. Syst Zool 38: 228-238.CrossRefGoogle Scholar
  4. Bickham JW (1979) Banded karyotypes of 11 species of American bats (genus Myotis). Cytologia 44: 789-797.PubMedGoogle Scholar
  5. Bielec PE, Gallagher DS, Womack JE, Busbee DL (1998) Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet Cell Genet 81: 18-25.PubMedCrossRefGoogle Scholar
  6. Cavagna P, Menotti A, Stanyon R (2000) Genomic homology of the domestic ferret with cats and humans. Mammalian Genome 11: 866-870.PubMedCrossRefGoogle Scholar
  7. Chowdhary BP, Raudsepp T, Frönicke L, Scherthan H (1998) Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res 8: 577-589.PubMedGoogle Scholar
  8. Dixkens C, Klett C, Bruch J, et al. (1998) ZOO-FISH analysis in insectivores: “Evolution extols the virtue of the status quo”. Cytogenet Cell Genet 80: 61-67.PubMedCrossRefGoogle Scholar
  9. Ellerman JR, Morrison-Scott TCS (1966) Checklist of Palaearctic and Indian Mammals. London: British Museum (Natural History), pp 810.Google Scholar
  10. Frönicke L, Scherthan H (1997) Zoo-fluorescence in situ hybridization analysis of human and Indian muntjac karyotypes (Muntiakus muntjak vaginalis) reveals satellite DNA clusters at the margins of conserved syntenic segments. Chromosome Res 5: 254-261.PubMedCrossRefGoogle Scholar
  11. Frönicke L, Wienberg J (2001) Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids. Mammalian Genome 12: 442-449.PubMedCrossRefGoogle Scholar
  12. Frönicke L, Chowdhary BP, Scherthan H, Gustavsson I (1996) A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mammalian Genome 7: 285-290.PubMedCrossRefGoogle Scholar
  13. Frönicke L, Müller-Navia J, Romanakis K, Scherthan H(1997) Chromosomal homeologies between human, harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype revealed by Zoo-FISH. Chromosoma 106: 108-113.PubMedCrossRefGoogle Scholar
  14. Göbbel L (2000) The external nasal cartilages in Chiroptera: significance for infraordinal relationships. J Mammal Evol 7: 167-201.CrossRefGoogle Scholar
  15. Goureau A, Yerle M, Schmitz A et al. (1996) Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36: 252-262.PubMedCrossRefGoogle Scholar
  16. Graphodatsky AS, Yang F, Serdukova N, Perelman P, Zhdanova NS, Ferguson-Smith MA (2000) Dog chromosome-specific paints reveal evolutionary inter-and intrachromosomal rearrangements in the American mink and human. Cytogenet Cell Genet 90: 275-278.PubMedCrossRefGoogle Scholar
  17. Gray JE (1821) On the natural arrangement of vertebrose animals. London Med Reposit 15: 296-310.Google Scholar
  18. Haiduk MW, Baker RJ, Robbins LW, Schlitter DA (1981) Chromosomal evolution in AfricanMegachiroptera: G-band and C-band assessment of the magnitude of change in similar standard karyotypes. Cytogenet Cell Genet 29: 221-232.PubMedGoogle Scholar
  19. Haig D (1999) A brief history of human autosomes. Phil Trans R Soc Lond B 354: 1447-1470.CrossRefGoogle Scholar
  20. Hameister H, Klett C, Bruch J, Dixkens C, Vogel W, Christensen K (1997): Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromosome Res 5: 5-11.PubMedCrossRefGoogle Scholar
  21. Harada M (1982) Karyological study of the Bonin flying fox (Pteropus pselaphon). Conservation Report of the Minami-Iwojima Wilderness Area, Tokyo, Japan. Nature Conservation Bureau, Environment Agency of Japan, pp 243-248.Google Scholar
  22. Hayes H (1995) Chromosome painting with human chromosome-specific DNA libraries reveals the extent and distribution of conserved segments in bovine chromosomes. Cytogenet Cell Genet 71: 168-174.PubMedGoogle Scholar
  23. Hutcheon JM, Kirsch JAW, Pettigrew JD (1998) Base compositional biases and the bat problem. III. The question of microchiropteran monophyly. Phil Trans R Soc Lond B 353: 607-617.CrossRefGoogle Scholar
  24. Koopman KF (1984) Bats. In: S Anderson, JK Jones, eds. Orders and Families of Recent Mammals of the World. New York: Wiley, pp 145-186.Google Scholar
  25. Koopman KF (1985) A synopsis of the families of bats, part VII. Bat Res News 25: 25-29.Google Scholar
  26. Korstanje R, O'Brien PCM, Yang F et al. (1999) Complete homology maps of the rabbit (Oryctolagus cuniculus) and human by reciprocal chromosome painting. Cytogenet Cell Genet 86: 317-322.PubMedCrossRefGoogle Scholar
  27. Madsen O, Scally M, Douady CJ et al. (2001) Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610-614.PubMedCrossRefGoogle Scholar
  28. Miller GS (1907) The Families and Genera of Bats. Washington, DC: Smithsonian Institution, 1-282.Google Scholar
  29. Mindell DP, Dick CW, Baker RJ (1991) Phylogenetic relationships among megabats, microbats and primates. Proc Natl Acad Sci USA 88: 10322-10326.PubMedCrossRefGoogle Scholar
  30. Müller S, Stanyon R, O'Brien PCM, Ferguson-Smith MA, Plesker R, Wienberg J (1999) Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma 108: 393-400.PubMedCrossRefGoogle Scholar
  31. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ (2001) Molecular phylogenetics and the origin of placental mammals. Nature 409: 614-618.PubMedCrossRefGoogle Scholar
  32. Narita Y, Oda SI, Takenaka O, Kageyama T (2001) Phylogenetic position of Eulipotyphla inferred from the cDNA sequences of pepsinogens A and C. Mol Phyl Evol 21: 32-42.CrossRefGoogle Scholar
  33. Nash WG, Wienberg J, Ferguson-Smith MA, Menninger JC, O'Brien SJ (1998) Comparative genomics: tracking chromosome evolution in the family Ursidae using reciprocal chromosome painting. Cytogenet Cell Genet 83: 182-192.PubMedCrossRefGoogle Scholar
  34. Nikaido M, Harada M, Cao Y, Hasegawa M, Okada N (2000) Monophyletic origin of the order Chiroptera and its phylogenetic position among Mammalia, as inferred from the complete sequence of the mitochondrial DNA of a Japanese megabat, the Ryukyu flying fox (Pteropus dasymallus). J Mol Evol 51: 318-328.PubMedGoogle Scholar
  35. Nikaido M, Kawai K, Cao Y et al. (2001) Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and a reevaluation of the phylogeny of bats and insectivores. J Mol Evol 53: 508-516.PubMedCrossRefGoogle Scholar
  36. Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356: 121-125.PubMedCrossRefGoogle Scholar
  37. O'Brien SJ, Womack JE, Lyon LA, Moore KJ, Jenkins NA, Copeland NG (1993) Anchored reference loci for comparative genomemapping in mammals. Nature Genet 3: 103-112.PubMedCrossRefGoogle Scholar
  38. O'Brien SJ, Menotti-Ramond M, Murphy WJ et al. (1999) The promise of comparative cytogenetics in mammals. Science 286: 458-480.PubMedCrossRefGoogle Scholar
  39. Onuma M, Cao Y, Hasegawa M, Kusakabe S (2000) A close relationship of Chiroptera with Eulipotyphla (core Insectivora) suggested by four mitochondrial genes. Zool Sci (Tokyo) 17: 1327-1332.Google Scholar
  40. Patton, JC, Baker RJ (1978) Chromosomal homology and evolution of phyllostomatoid bats. Syst Zool 27: 449-462.CrossRefGoogle Scholar
  41. Pettigrew JD (1986) Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231: 1304-1306.PubMedGoogle Scholar
  42. Pettigrew JD, Jamieson BGM, Robson SK, Hall LS, Mcanally KI, Cooper HM (1989) Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). Phil Trans R Soc Lond B 325: 489-559.Google Scholar
  43. Qumsiyeh MB, Owen RD, Chesser RK (1988) Differential rates of genic and chromosomal evolution in bats of the family Rhinolophidae. Genome 30: 326-335.PubMedGoogle Scholar
  44. Raudsepp T, Frönicke L, Scherthan H, Gustavsson I, Chowdhary BP (1996) Zoo-FISH delineates conserved chromosomal segments in horse and man. Chromosome Res 4: 218-225.PubMedCrossRefGoogle Scholar
  45. Rettenberger G, Klett C, Zechner U et al. (1995) ZOO-FISH analysis: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res 3: 479-486.PubMedCrossRefGoogle Scholar
  46. Richard F, Lombard M, Dutrillaux B (2000) Phylogenetic origin of human chromosomes 7, 16, and 19 and their homologs in placental mammals. Genome Res 10: 644-651.PubMedCrossRefGoogle Scholar
  47. Richard F, Messaoudi C, Lombard M, Dutrillaux B (2001) Chromosome homologies between man and mountain zebra (Equus zebra hartmannae) and description of a new ancestral synteny involving sequences homologous to human chromosomes 4 and 8. Cytogenet Cell Genet 93: 291-296.PubMedCrossRefGoogle Scholar
  48. Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Phylogenet 15: 454-459.Google Scholar
  49. Seabright M (1971) A rapid staining technique for human chromosomes. Lancet II: 971-972.CrossRefGoogle Scholar
  50. Simmons NB (1998) A reappraissal of interfamilial relationships of bats. In: TH Kunz, PA Racey, eds. Bat Biology and Conservation. Washington, London: Smithsonian Inst. Press, pp 3-26.Google Scholar
  51. Simmons NB, Geisler JH (1998) Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist 235: 1-182.Google Scholar
  52. Springer MS, Teeling EC, Madsen O, Stanhope M, de Jong WW(2001a) Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98: 6241-6246.PubMedCrossRefGoogle Scholar
  53. Springer MS, Teeling E, Stanhope MJ (2001b) External nasal cartilages in bats: evidence for chiropteran monophyly? J Mammal Evol 8: 231-236.CrossRefGoogle Scholar
  54. Sreepada KS, Naidu KN, Gururaj ME (1993) Trends of karyotypic evolution in the genus Hipposideros (Chiroptera: Mammalia). Cytobios 75: 49-57.PubMedGoogle Scholar
  55. Teeling E, Scally M, Kao D, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188-192.PubMedCrossRefGoogle Scholar
  56. Teeling EC, Madsen O, van den Bussche RA, de Jong WW, Stanhope MJ, Springer MS (2002) Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc Natl Acad Sci USA 99: 1431-1436.PubMedCrossRefGoogle Scholar
  57. Van den Bussche RA, Hoofer SR (2001) Evaluating monophyly of Nataloidea (Chiroptera) with mitochondrial DNA sequences. J Mammal 82: 320-327.CrossRefGoogle Scholar
  58. Volleth M (1987) Differences in the location of nucleolus organizer regions in European vespertilionid bats. Cytogenet Cell Gen 44: 186-197.CrossRefGoogle Scholar
  59. Volleth M (1989) Karyotypevolution und Phylogenie der Vespertilionidae (Mammalia: Chiroptera). PhD Dissertation, Erlangen, 1-262.Google Scholar
  60. Volleth M, Heller K-G (1994) Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis. Zool Syst Evolut-forsch 32: 11-34.CrossRefGoogle Scholar
  61. Volleth M, Klett C, Kollak A et al. (1999) ZOO-FISH analysis in a species of the order Chiroptera: Glossophaga soricina (Phyllostomidae). Chromosome Res 7: 57-64.PubMedCrossRefGoogle Scholar
  62. Volleth M, Bronner G, Göpfert MC, Heller K-G, von Helversen O, Yong HS (2001) Karyotype comparison and phylogenetic relationships of Pipistrellus-like bats (Vespertilionidae; Chiroptera; Mammalia). Chromosome Res 9: 25-46.PubMedCrossRefGoogle Scholar
  63. Wadell PJ, Cao Y, Hauf J, Hasegawa M (1999) Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid-invariant sites-logDet plus site stripping, to detect internal conflicts in the data, with special reference to the position of hedgehog, armadillo, and elephant. Syst Biol 48: 31-53.CrossRefGoogle Scholar
  64. Wienberg J, Stanyon R, Nash WG et al. (1997) Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 77: 211-217.PubMedGoogle Scholar
  65. Yang F, O'Brien PCM, Milne BS et al. (1999) A complete chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62: 189-202.PubMedCrossRefGoogle Scholar
  66. Yang F, Graphodatsky AS, O'Brien PCM et al. (2000) Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res 8: 393-404.PubMedCrossRefGoogle Scholar
  67. Zima J, Volleth M, Horácek I et al. (1992) Comparative karyology of rhinolophid bats. In: I Horácek, V Vorhalik, eds. Prague Studies in Mammalogy. Prague: Charles University Press, pp 229-236.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. Volleth
    • 1
    • 2
  • K.-G. Heller
    • 3
  • R.A. Pfeiffer
    • 1
  • H. Hameister
    • 4
  1. 1.Institut für HumangenetikUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Institut für HumangenetikOtto-von-Guericke-Universität Magdeburg, Leipzigerstr. 44MagdeburgGermany
  3. 3.Institut für ZoologieUniversität Erlangen-NürnbergErlangenGermany
  4. 4.Abteilung HumangenetikUniversität UlmUlmGermany

Personalised recommendations