Journal of Chemical Ecology

, Volume 25, Issue 8, pp 1813–1826 | Cite as

Olfactory Reception of Conspecific Aggregation Pheromone and Plant Odors by Nymphs of the Predator, Podisus maculiventris

  • Josué Sant'ana
  • Rogério F. P. Da Silva
  • Joseph C. Dickens
Article

Abstract

Olfactory reception of 23 odorants, including plant volatiles and male-produced aggregation pheromone, by third and fifth instars of the spined soldier bug (SSB) Podisus maculiventris was investigated by using electroantennograms (EAGs). Both nymphal stages were sensitive to male-produced aggregation pheromone components (E)-2-hexenal, benzyl alcohol, and α-terpineol. The plant volatile, (E)-2-hexen-1-ol (a chemical known to be released by plants in response to prey feeding over the short-term), elicited the largest EAGs of all volatiles tested. While third instars were sensitive to nonanal, only fifth instars responded to both nonanal and (±)-linalool, both compounds released systemically by plants in response to feeding by potential prey. Antennal extirpation experiments showed that sensilla responsive to hexan-1-ol, (E)-2-hexenal, and α-terpineol are situated mainly on the terminal antennal segment. The results support the hypothesis that P. maculiventris nymphs use both plant volatiles and pheromone components in locating potential prey and other behaviors.

Plant volatiles pheromone odor perception nymphs predators spined soldier bug Podisus maculiventris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Acree, T., and Arn, H. 1997. Flavornet. Cornell University, Ithaca, New York. http://www.nysaes.cornell.edu/flavornet/Google Scholar
  2. Aldrich, J. R. 1988. Chemistry and biological activity of pentatomid sex pheromones, pp. 418-431, in H. G. Cutler (ed.). Biologically Active Natural Products: Potential Use in Agriculture. American Chemical Society, Washington, D.C.Google Scholar
  3. Aldrich, J. R. 1995. Chemical communication in true bugs and parasitoid, pp. 318-363, in W. J. Bell and R. T. Cardé (eds.). Chemical Ecology of Insects 2. Chapman and Hall, London.Google Scholar
  4. Aldrich, J. R., Kochansky, J. P., and Abrams, C. B. 1984a. Attractant for a beneficial insect and its parasitoids: Pheromone of a predatory spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae). Environ. Entomol. 13:1031-1036.Google Scholar
  5. Aldrich, J. R., ochansky, J. P., Lusby, W. R., and Sexton, J. D. 1984b. Semiochemicals from a predaceous stink bug, Podisus maculiventris (Hemiptera: Pentatomidae). J. Wash. Acad. Sci. 74:39-46.Google Scholar
  6. Aldrich, J. R., Zanuncio, J. C., Vilela, E. F., Torres, J. B., and Cave, R. D. 1997. Field tests of predaceous pentatomid pheromones and semiochemistry of Podisus and Supputius species (Hemiptera: Pentatomidae: Asopinae). An. Soc. Entomol. Brasil. 26:1-14.Google Scholar
  7. Bolter, C. J., Dicke, M., Van Loon, J. J. A., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003-1023.Google Scholar
  8. Chinta, S., Dickens, J. C., and Aldrich, J. R. 1994. Olfactory reception of potential pheromones and plant odors by tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae). J. Chem. Ecol. 20:3251-3267.Google Scholar
  9. Croft, K. P., Juttner, R., and Slusarenko, A. J. 1993. Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae sv phaseolicola. Plant Physiol. 101:13-24.Google Scholar
  10. Dicke, M., Sabelis, M. W., Takabayashi, J., Bruni, J., and Posthumus, M. A. 1990. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects of application in pest control. J. Chem. Ecol. 16:3091-3118.Google Scholar
  11. Dickens, J. C. 1978. Olfactory perception of pheromone and host-plant enantiomers by Ips typographus L. (Col.: Scolytidae). Entomol. Exp. Appl. 24:136-142.Google Scholar
  12. Dickens, J. C. 1984. Olfaction in the boll weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae): Electroantennogram studies. J. Chem. Ecol. 10:1759-1785.Google Scholar
  13. Dickens, J. C. 1989. Green leaf volatiles enhance aggregation pheromone of boll weevil, Anthonomus grandis. Entomol. Exp. Appl. 52:191-203.Google Scholar
  14. Dickens, J. C. 1999. Predator/prey interactions: Olfactory adaptations of generalist and specialist predators. Agric. For. Entomol. 1:47-54.Google Scholar
  15. Dickens, J. C., and Boldt, P. E. 1984. Electroantennogram responses of Trirhabda bacharides (Weber) (Coleoptera: Chrysomelidae) to plant volatiles. J. Chem. Ecol. 11:767-779.Google Scholar
  16. Dickens, J. C., and Callahan, F. E. 1996. Antennal-specific protein in tarnished plant bug, Lygus lineolaris: Production and reactivity of antisera. Entomol. Exp. Appl. 80:19-22.Google Scholar
  17. Dickens, J. C., Jang, E. B., Light, D. M., and Alford, A. R. 1990. Enhancement of insect pheromone responses by green leaf volatiles. Naturwissenschaften 77:29-31.Google Scholar
  18. Dickens, J. C., Visser, J. H., and Van Der Pers, J. N. C. 1993. Detection and deactivation of pheromone and plant odor components by the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). J. Insect Physiol. 39:503-516.Google Scholar
  19. Dickens, J. C., Callahan, F. E., Wergin, W. P., and Erbe, E. F. 1995. Olfaction in hemimetabolous insect: Antennal-specific protein in adults Lygus lineolaris (Heteroptera: Miridae). J. Insect Physiol. 41:857-867.Google Scholar
  20. Dickens, J. C., Callahan, F. E., Wergin, W. P., Murphy, C. A., and Vogt, R. G. 1998. Intergeneric distribution and immunolocalization of a putative odorant-binding protein in true bugs (Hemiptera, Heteroptera). J. Exp. Biol. 201:33-41.Google Scholar
  21. Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics 11:1-42.Google Scholar
  22. Hatanaka, A. 1993. The biogeneration of green leaves. Phytochemistry 34:1201-1218.Google Scholar
  23. Hedin, P. A., Thompson, A. C., and Gueldner, R. C. 1971. Constituents of the cotton bud. The alcohols. Phytochemistry 10:3316-3318.Google Scholar
  24. Hedin, P. A., Thompson, A. C., and Gueldner, R. C. 1973. The boll weevil-cotton plant complex. Toxicol. Environ. Chem. Rev. 1:291-351.Google Scholar
  25. Hedin, P. A., Thompson, A. C., and Gueldner, R. C. 1975. Survey of air space volatiles of the cotton plant. Phytochemistry 14:2088-2090.Google Scholar
  26. Hedin, P. A., Thompson, A. C., and Gueldner, R. C. 1976. Cotton plant and insect constituents that control boll weevil behavior and development. Annu. Rev. Phytochem. 10:271-350.Google Scholar
  27. Hough-Goldstein, J., and Keil, C. B. 1991. Prospects for integrated control of the Colorado potato beetle (Coleoptera: Chrysomelidae) using Perillus bioculatus (Hemiptera: Pentatomidae) and various pesticides. J. Econ. Entomol. 84:1645-1651.Google Scholar
  28. Hough-Goldstein, J., and McPherson, D. 1996. Comparison of Perillus bioculatus and Podisus maculiventris (Hemiptera: Pentatomidae) as potential control agents of the Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 89:1116-1123.Google Scholar
  29. Ishiwatari, T. 1974. Studies on the scent of stink bugs (Hemiptera: Pentatomidae). I. Alarm pheromone activity. Appl. Entomol. Zool. 9:153-158.Google Scholar
  30. Ishiwatari, T. 1976. Studies on the scent of stink bugs (Hemiptera: Pentatomidae) II. Aggregation pheromone activity. Appl. Entomol. Zool. 11:38-44.Google Scholar
  31. Kovats, E. 1958. Gas-chromatographische Charakterisierung organisher Verbindungen. Helv. Chim. Acta 41:1915-1932.Google Scholar
  32. Landolt, P. J., and Phillips, T. W. 1997. Host plant influences on sex pheromone behavior of phytophagous insects. Annu. Rev. Entomol. 42:317-391.Google Scholar
  33. Leal, W. S., Higuchi, H., Mizutani, N., Nakamori, H., Kadosawa, T., and Ono, M. 1995. Multifunctional communication in Riptortus clavatus (Heteroptera: Alydidae): Conspecific nymphs and egg parasitoid Ooencyrtus nezarae use the same adult attractant pheromone as chemical cue. J. Chem. Ecol. 21:973-985.Google Scholar
  34. Levinson, H. Z., Levinson, A. R., Muller, B., and Steinbrecht, R. A. 1974. Structure of sensilla, olfactory perception, and behaviour of the bedbug, Cimex lectularius, in response to its alarm pheromone. J. Insect Physiol. 20:1231-1248.Google Scholar
  35. Light, D. M., Jang, E. B., and Dickens, J. C. 1988. Electroantennogram responses of the Mediterranean fruit fly, Ceratitis capitata, to a spectrum of plant volatiles. J. Chem. Ecol. 14:159-180.Google Scholar
  36. Light, D. M., Kamm, J. A., and Buttery, R. G. 1992. Electroantennogram response of alfalfa seed chalcid, Bruchophagus roddi (Hymenoptera: Eurytomidae), to host-and nonhost plant volatiles. J. Chem. Ecol. 18:333-352.Google Scholar
  37. Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C. J., and Tumlinson, J. H. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc. Natl. Acad. Sci. U.S.A. 91:11836-11840.Google Scholar
  38. Loughrin, J. H., Potter, D. A., and Hamilton-Kemp, T. R. 1995. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popilla japonica Newman). J. Chem. Ecol. 21:1457-1467.Google Scholar
  39. Mattiacci, L., Dicke, M., and Posthumus, M. A. 1994. Induction of parasitoid attracting synomone in brussels sprouts plants by feeding of Pieris brassicae larvae: Role of mechanical damage and herbivore elicitor. J. Chem. Ecol. 20:2229-2247.Google Scholar
  40. McCall, P. J., Turlings, T. C. J., Lewis, W. J., and Tumlinson, J. H. 1993. The role of plant volatiles in host location by the specialist parasitoid Microplitis croceipes Cresson (Braconidae: Hymenoptera). J. Insect Behav. 6:625-639.Google Scholar
  41. McPherson, J. E. 1982. The Pentatomidae (Hemiptera) of Northeastern North America with Emphasis on the Fauna of Illionis. University Press, Carbondale, 240 pp.Google Scholar
  42. Ostle, B. 1969. Statistics in Research. Iowa State University Press, Ames, Iowa, xv + 585 pp.Google Scholar
  43. Pantle, C., and Feir, D. 1976. Olfactory responses to milkweed seed extracts in the milkweed bug. J. Insect Physiol. 22:285-289.Google Scholar
  44. Payne, T. L. 1970. Electrophysiological investigations of response to pheromone in bark beetles. Contrib. Boyce Thompson Inst. 24:275-282.Google Scholar
  45. Payne, T. L. 1975. Bark beetle olfaction. III. Antennal olfactory responsiveness of Dendroctonus frontalis Zimmerman and D. brevicomis Le Conte (Coleoptera: Scolytidae) to aggregation pheromones and host tree terpene hydrocarbons. J. Chem. Ecol. 1:233-242.Google Scholar
  46. Sant' Ana, J., and Dickens, J. C. 1998. Comparative electrophysiological studies of olfaction in predaceous bugs, Podisus maculiventris and P. nigrispinus. J. Chem. Ecol. 24:965-984.Google Scholar
  47. Sant' Ana, J., Bruni, R., Abdul-Baki, A. A., and Aldrich, J. R. 1997. Pheromone-induced movement of nymphs of the predator, Podisus maculiventris (Heteroptera: Pentatomidae). Biol. Cont. 10:123-128.Google Scholar
  48. Schneider, D. 1957. Elektrophysiologische Untersuchungen von Chemo-und Mechanorezeptoren der Antenne des Seidenspinners Bombyx mori L. Z. Vergl Physiol. 40:8-41.Google Scholar
  49. SchÜtz, S., Weißbecker, B., Klein, A., and Hummel, H. E. 1997. Host plant selection of the Colorado potato beetle as influenced by damage induced volatiles of the potato plant. Naturwissenschaften 84:212-217.Google Scholar
  50. Sinitsina, E. E., and Krutov, V. V. 1996. Antennal and labial sense organs in the bug Podisus maculiventris (Hemiptera, Pentatomidae). Entomol. Rev. 76:568-572.Google Scholar
  51. Thomas, D. B. 1992. Taxonomic synopsis of the Asopinae Pentatomidae (Heteroptera) of the western hemisphere. Ann. Entomol. Soc. Am. 1:88-89.Google Scholar
  52. Turlings, T. C. J., Tumlinson, J. H., Eller, F. J., and Lewis, W. J. 1991. Larval damaged plants: Source of volatile synomones that guide the parasitoid Cotesia marginiventris (Cresson) to the micro-habitat of its hosts. Entomol. Exp. Appl. 58:75-82.Google Scholar
  53. Van Straten, S., and Maarse, H. 1983. Volatile Compounds in Food, 5th ed. Central Institute for Nutrition and Food Research TNO, Amsterdam, The Netherlands.Google Scholar
  54. Vaughn, T. T., Antolin, M. F., and Biostad, L. B. 1996. Behavioral and physiological responses of Diaeretiella rapae to semiochemicals. Entomol. Exp. Appl. 78:187-196.Google Scholar
  55. Vet, L. E. M., and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 27:141-172.Google Scholar
  56. Vet, L. E. M., and Groenwold, A. W. 1990. Semiochemicals and learning in parasitoids. J. Chem. Ecol. 16:3119-3135.Google Scholar
  57. Visser, J. H. 1979. Electroantennogram responses of the Colorado beetle, Leptinotarsa decemlineata, to plant volatiles. Entomol. Exp. Appl. 25:86-97.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Josué Sant'ana
    • 1
  • Rogério F. P. Da Silva
    • 2
  • Joseph C. Dickens
    • 1
  1. 1.USDA, ARS, Beltsville Agricultural Research CenterPlant Sciences InstituteBARC-WestMaryland
  2. 2.Departamento de FitossanidadeUniversidade Federal do Rio Grande do Sul, Faculdade de AgronomiaPorto Alegre, Rio Grande do SulBrazil

Personalised recommendations