Neurochemical Research

, Volume 27, Issue 10, pp 1165–1180

Gene Expression Profiling Within the Developing Neural Tube

  • Richard H. Finnell
  • Wade M. Junker
  • Lisa Kvist Wadman
  • Robert M. Cabrera


The developing mammalian nervous system is subject to devastating congenital malformations with clinical significance that extends into the billions of health care dollars annually worldwide. Neural tube defects (NTDs) are among the most common of all human congenital defects, yet their etiology remains poorly understood. This is largely due to the complexity of the genetic factors regulating the intricate events involved in neurulation. Using mouse model systems and the application of modern molecular biological technologies, we have recently gained a greater appreciation for the factors that not only regulate normal neural tube closure (NTC), but those genetic factors that predispose an embryo to significant birth defects such as anencephaly or spina bifida. We have selected prominent murine mutants, both spontaneous and genetically modified, as well as the use of teratogenic agents, to examine the impact of altering the normal pattern of gene expression in the developing neural tube.

Neural tube defects gene expression profiling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Juriloff, D. M. and Harris, M. J. 2000. Mouse models for neural tube closure defects. Hum. Mol. Genet. 9:993-1000.Google Scholar
  2. 2.
    Harris, M. J. and Juriloff, D. M. 1999. Mini-review: Toward understanding mechanisms of genetic neural tube defects in mice. Teratology 60:292-305.Google Scholar
  3. 3.
    Golden, J. A. and Chernoff, G. F. 1995. Multiple sites of anterior neural tube closure in humans: Evidence from anterior neural tube defects (anencephaly). Pediatrics 95:506-510.Google Scholar
  4. 4.
    Bennett, G. D. and Finnell, R. H. 1998. Handbook of Developmental Neurotoxicology. Periods of Susceptibility to Induced Malformations of the Developing Mammalian Brain (ed. Slikker, W., and Chang, Jr., L. W.), Chap. 9. Pages 189-208. Academic Press, San Diego.Google Scholar
  5. 5.
    Van Allen, M. I., Kalousek, D. K., Chernoff, G. F., Juriloff, D., Harris, M., McGillivray, B. C., Yong, S. L., Langlois, S., MacLead, P. M., Chitayat, P., Friedman, J. M., Wilson, R. D., McFadden, D., Pantzer, J., Ritchie, S., and Hall, J. G. 1993. Evidence for multi-site closure of the neural tube in humans. Am. J. Med. Genet. 47:723-743.Google Scholar
  6. 6.
    Hamburger, V. and Hamilton, H. L. 1992. A series of normal stages in the development of the chick embryo. 1951. Dev. Dyn. 195:231-272.Google Scholar
  7. 7.
    Copp, A. J. and Bernfield, M. 1994. Etiology and pathogenesis of human neural tube closure defects: Insights from mouse models. Curr. Opin. Pediatr. 5:624-631.Google Scholar
  8. 8.
    Fleming, A. and Copp, A. J. 2000. A genetic risk factor for mouse neural tube defects: Defining the embryonic basis. Hum. Mol. Genet. 9:575-581.Google Scholar
  9. 9.
    Nakatsu, T., Uwabe, C., and Shiota, K. 2000. Neural tube closure in humans initiates at multiple sites: Evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat. Embryol. 201:455-466.Google Scholar
  10. 10.
    O'Rahilly, R. and Miller, F. 2002. The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology 65:162-170.Google Scholar
  11. 11.
    Finnell, R. H., Gelineau-van Waes, J., Bennett, G. D., Barber, R. C., Wlodarczyk, B., Shaw, G. M., Lammer, E. J., Piedrahita, J. A., and Eberwine, J. H. 2000. Genetic basis of susceptibility to environmentally induced tube defects. Ann. N.Y. Acad. Sci. 919:261-277.Google Scholar
  12. 12.
    Harris, M. J. 2001. Why Are the Genes That Cause Risk of Human Neural Tube Defects So Hard to Find? Teratology 63:165-166.Google Scholar
  13. 13.
    Finnell, R. H., Greer, K. A., Barber, R. C., Piedrahita, J. A., Shaw, G. M., and Lammer, E. J. 1998. Neural tube and craniofacial defects with special emphasis on folate pathway genes. Crit. Rev. Oral Biol. Med. 9:38-53.Google Scholar
  14. 14.
    Shaw, G. M., Schaffer, D., Velle, E. M., Morland, K., and Harris, J. A. 1995. Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects. Epidemiology 6:219-226.Google Scholar
  15. 15.
    Gelineau-van Waes, J. and Finnell, R. H. 2001. Genetics of neural tube defects. Semin. Pediatr. Neurol. 8:160-164.Google Scholar
  16. 16.
    Lucock, M. 2000. Folic acid: Nutritional biochemistry, molecular biology and role in disease processes. Mol. Genet. Metab. 71:121-138.Google Scholar
  17. 17.
    Czeizel, A. E. and Dudas, I. 1992. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 327:1832-1835.Google Scholar
  18. 18.
    Piedrahita, J. A., Oetama, B., Bennett, G. D., Gelineau-van Waes, J., Kamen, B. A., Richardson, J., Lacey, S. W., Anderson, R. G., and Finnell, R. H. 1999. Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nat. Genet. 23:228-232.Google Scholar
  19. 19.
    Finnell, R. H., Spiegelstein, O., Wlodarczyk, B., Triplett, A., Pogribny, I. P., Melnyk, S., and James, J. S. 2002. DNA Methylation in Folbp1 Knockout Mice Supplemented with Folinic During Gestation. [In Press].Google Scholar
  20. 20.
    Zhao, R., Russell, R. G., Wang, Y., Liu, L., Gao, F., Kneitz, B., Edelmann, W., and Goldman, I. D. 2001. Rescue of embryonic lethality in reduced folate carrier-deficient mice by maternal folic acid supplementation reveals early neonatal failure of hematopoietic organs. J. Biol. Chem. 276:10224-10228.Google Scholar
  21. 21.
    Zhao, Q., Behringer, R. R., and de Crombrugghe, B. 1996. Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nat. Genet. 3:275-283.Google Scholar
  22. 22.
    Zhao, G. Q., Zhou, X., Eberspaecher, H., Solursh, M., and de Crombrugghe B. 1993. Cartilage homeoprotein 1, a homeoprotein selectively expressed in chondrocytes. Proc. Natl. Acad. Sci USA 18:8633-8637.Google Scholar
  23. 23.
    Zhao, G. Q., Eberspaecher, H., Seldin, M. F., and de Crombrugghe B. 1994. The gene for the homeodomain-containing protein Cart-1 is expressed in cells that have a chondrogenic potential during embryonic development. Mech. Dev. 3:245-254.Google Scholar
  24. 24.
    Barbera, J. P., Rodriguez, T. A., Greene, N. D., Weninger, W. J., Simone, A., and Copp, A. J. 2002. Folic acid prevents exencephaly in Cited2 deficient mice. Hum. Mol. Genet. 11:283-293.Google Scholar
  25. 25.
    Auerbach, R. J. 1954. Analysis of the developmental effects of a lethal mutation in the house mouse. J. Exp. Zool. 127:305-329.Google Scholar
  26. 26.
    Moase, C. E. and Trasler, D. G. 1991. N-CAM alterations in splotch neural tube defect mouse embryos. Development 113:1049-1058.Google Scholar
  27. 27.
    Li, J., Liu, K. C., Jin, F., Lu, M M., and Epstein, J. A. 1999. Transgenic rescue of congenital heart disease and spina bifida in Splotch mice. Development 126:2495-2503.Google Scholar
  28. 28.
    Goulding, M. D., Chalepakis, G., Deutsch, U., Erselius, J. R., and Gruss, P. 1991. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. Embo. J. 10:1135-1147.Google Scholar
  29. 29.
    Machado, A. F., Martin, L J., and Collins, A. D. 2001. Pax3 and the splotch mutations: Structure, function and relationship to teratogenesis, including gene-chemical interactions. Curr. Pharm. Des. 7:751-785.Google Scholar
  30. 30.
    Kozmik, Z., Furzbauer, R., Dorfler, P., and Busslinger, M. 1993. Alternative splicing of Pax-8 gene transcripts is developmentally regulated and generates isoforms with different transactivation properties. Mol. Cell. Biol. 13:6024-6035.Google Scholar
  31. 31.
    Kozmik, Z., Czerny, T., and Busslinger, M. 1997. Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8. EMBO J. 16:6793-6803.Google Scholar
  32. 32.
    Tremblay, P., Pituello, F., and Gruss, P. 1996. Inhibition of floor plate differentiation by PAX3: Evidence from eptopic expression in transgenic mice. Development 122:2555-2567.Google Scholar
  33. 33.
    Wlodarczyk, B. J., Bennett, G. D., Calvin, J. A., Craig, J. C., and Finnell, R. H. 1996. Arsenic-induced alterations in embryonic transcription factor gene expression: Implications for abnormal neural development. Dev. Genet. 18:306-315.Google Scholar
  34. 34.
    Geleneau-van Waes, J., Bennett, G. D., and Finnell, R. H. 1999. Phenytoin-induced alterations in crainiofacial gene expression. Teratology 59:23-34.Google Scholar
  35. 35.
    Eberwine, J., Spencer, C., Miyashiro, S., and Finnell, R. H., 1992. Complementary DNA synthesis in situ: Methods and applications. Methods Emzymol. 216:80-100.Google Scholar
  36. 36.
    Pardue, M. L. and Gall, J. G. 1969. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA 64:600-604.Google Scholar
  37. 37.
    Pardue, M. L. and Gall, J. G. 1970. Chromosomal localization of mouse satellite DNA. Science 168:1356-1358.Google Scholar
  38. 38.
    Barber, R. C., Bennett, G. D., Greer, K. A., and Finnell, R. H. 1999. Expression patterns of folate binding proteins one and two in the developing mouse embryo. Mol. Genet. Metab. 66:31-39.Google Scholar
  39. 39.
    Liang, P. and Pardee, A. B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:961-971.Google Scholar
  40. 40.
    Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W., and Deetz, K. 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4:357-362.Google Scholar
  41. 41.
    Holland, P. M., Abramson, R. D., Watson, R., and Gelfand, D. H. 1991. Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88:7276-7280.Google Scholar
  42. 42.
    Grove, D. S. 1999. Quantitative Real-Time Polymerase Chain Reaction for the Core Facility Using TaqMan and the Perkin-Elmer/Applied Biosystems Division 7700 Sequence Detector. J. BioMol. Tech. 10:11-16.Google Scholar
  43. 43.
    Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503-517.Google Scholar
  44. 44.
    Jiang, R., Lan, Y., Norton, C. R., Sundberg, J. P., and Gridley, T. 1998. The Slug gene is not essential for mesoderm or neural crest development in mice. Dev. Biol. 198:277-285.Google Scholar
  45. 45.
    Liem, K. F., Trennl, G., Roelink, H., and Jessell, T. M. 1995. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969-979.Google Scholar
  46. 46.
    Selleck, M. A., Garcia-Castro, M., Artinger, K. B., and Bronner-Fraser, M. 1998. Effects of Shh and noggin on neural crest formation demonstrate that BMP is required in the neural tube but not ectoderm. Development 125:4919-4930.Google Scholar
  47. 47.
    Bronner-Fraser, M. 2002. Molecular analysis of neural crest formation. J. Physiol. Paris 96:3-8.Google Scholar
  48. 48.
    Laurence, K. M. 1985. Prevention of neural tube defects by improvement in maternal diet and preconceptual folic acid supplementation. Prog. Clin. Biol. Res. 163B:383-388.Google Scholar
  49. 49.
    Milunsky, A., Jick, H., Jisk, S. S., Bruell, C. L., MacLaughlin, D. S., Rothman, K. J., and Willett, W. 1989. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA 262:2847-2852.Google Scholar
  50. 50.
    Vacha, S. J., Bennett, G. D., Mackler, S. A., Koebbe, M. J., and Finnell, R. H. 1997. Identification of a growth arrest specific (gas5) gene by differential display as a candidate gene for determining susceptibility to hyperthermia-induced exencephaly in mice. Dev. Genet. 21:212-222.Google Scholar
  51. 51.
    Coccia, E. M., Circala, C., Charlesworth, A., Ciccarelli, C., Rossi, G. B., Philipson, L., and Sorrentino, V. 1992. Regulation and expression of a growth arrest specific gene (gas5) during growth, differentiation, and development. Mol. Cell Biol. 12:3514-3521.Google Scholar
  52. 52.
    Smith, C. M. and Steitz, J. A. 1998. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol. Cell Biol. 12:6897-6909.Google Scholar
  53. 53.
    Wlodarczyk, B. J., Bennett, G. D., Calvin, J. A., and Finnell, R. H. 1996. Arsenic-induced neural tube defects in mice: Alterations in cell cycle gene expression. Reprod. Toxicol. 10:447-454.Google Scholar
  54. 54.
    Bennett, G. D., An, J., Craig, J. C., Gefrides, L. A., Calvin, J. A., and Finnell, R. H. 1998. Neurulation abnormalities secondary to altered gene expression in neural tube defect susceptible splotch embryos. Teratology 57:17-29.Google Scholar
  55. 55.
    Bennett, G. D., Wlodarczyk, B., Calvin J. A., Craig, J. C., and Finnell, R. H. 2000. Valproic acid-induced alterations in growth and neurotrophic factor gene expression in murine embryos. Reprod. Toxicol. 14:1-11.Google Scholar
  56. 56.
    Lachyankar, M. B., Condon, P. J., Quesenberry, P. J., Litofsky, N. S., Recht, L. D., and Ross, A. H. 1997. Embryonic precursor cells that express Trk receptors: Induction of different cell fates by NGF, BDNF, NT-3, and CNTF. Exp. Neurol. 144:350-360.Google Scholar
  57. 57.
    Carninci, P. and Hayashizaki, Y. 1999. High-efficiency full-length cDNA cloning. Methods Enzymol. 303:19-44.Google Scholar
  58. 58.
    Miki, R., Kadota, K., Bono, H., Mizuno, Y., Tomaru, Y., Carninci, P., Itoh, M., Shibata, K., Kawai, J., Konno, H., Watanabe, S., Sato, K., Tokusumi, Y., Kikuchi, N., Ishii, Y., Hamaguchi, Y., Nishizuka, I., Goto, H., Nitanda, H., Satomi, S., Yoshiki, A., Kusakabe, M., DeRisi, J. L., Eisen, M. B., Iyer, V. R., Brown, P. O., Muramatsu, M., Shimada, H., Okazaki, Y., and Hayashizaki, Y. 2001. Delineating developmental and metabolic pathways in vivo by expression profiling using the RIKEN set of 18,816 full-length enriched mouse cDNA arrays. Proc. Natl. Acad. Sci. USA 98:2199-2204.Google Scholar
  59. 59.
    Paulsen, M. and Ferguson-Smith, A. C. 2001. DNA methylation in genomic imprinting, development, and disease. J. Pathol. 195:97-110.Google Scholar
  60. 60.
    Reik, W., Maher, E. R., Morrison, P. J., Harding, A. E., and Simpson S. A. 1993. Age at onset in Huntington's disease and methylation at D4S95. J. Med. Genet. 30:185-188.Google Scholar
  61. 61.
    Farrer, L. A., Myers, R. H., Connor, L., Cupples, L. A., and Growdon, J. H. 1991. Segregation analysis reveals evidence of a major gene for Alzheimer disease. Am. J. Hum. Genet. 48:1026-1033.Google Scholar
  62. 62.
    Yu, W. D., Wenger, S. L., and Steele, M. W. 1990. X chromosome imprinting in fragile X syndrome. Hum. Genet. 85:590-594.Google Scholar
  63. 63.
    Beck, S. L. 1993. Does genomic imprinting influence valproic acid teratogenicity? Teratology 47:400.Google Scholar
  64. 64.
    Choi, J. D., Underkoffler, L. A., Collins, J. N., Marchegiani, S. M., Terry, N. A., Beechey, C. V., and Oakey, R. J. 2001. Micro-array expression profiling of tissues from mice with uniparental duplications of chromosomes 7 and 11 to identify imprinted genes. Mamm. Genome 12:758-764.Google Scholar
  65. 65.
    Harland, R. M. and Gerhart, J. C. 1997. Formation and function of Spemann's organizer. Annu. Rev. Cell Devel. Biol. 13:611-667.Google Scholar
  66. 66.
    Trainor, P. A., Sobieszczuk, D., Wilkinson, D., and Krumlauf, R. 2002. Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways. Development 129:433-442.Google Scholar
  67. 67.
    Kruman, I. I., Kumaravel, T. S., Lohani, A., Pedersen, W. A., Cutler, R. G., Kruman, Y., Haughey, N., Lee, J., Evans, M., and Mattson, M. P. 2002. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease. J. Neurosci. 22:1752-1762.Google Scholar
  68. 68.
    Hetts, S. W. 1998. To die or not to die: An overview of apoptosis and its role in disease. JAMA 279:300-307.Google Scholar
  69. 69.
    Chiang, L. W., Grenier, J. M., Ettwiller, L., Jenskins, L. P., Ficenec, D., Martin, J., Jin, F., DiStefano, P. S., and Wood, A. 2001. An orchestrated gene expression component of neuronal programmed cell death revealed by cDNA array analysis. Proc. Natl. Acad. Sci. USA 98:2814-2819.Google Scholar
  70. 70.
    Miller, T. M. and Johnson, E. M., Jr. 1996. Metabolic and genetic analyses of apoptosis in potassium/serum-deprived Rat cerebellar granule cells. J. Neurosci. 16:7487-7495.Google Scholar
  71. 71.
    Schultz, J. B., Weller, M., and Klockgether, T. 1996. Potassium deprivation-induced apoptosis of cerebellar granule neurons: A sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J. Neurosci. 16:4696-4706.Google Scholar
  72. 72.
    Chiang, P. K., Gordon, R. K., Tal, J., Zeng, G. C., Doctor, B. P., Pardhasaradhi, K., and McCann, P. P. 1996. S-Adenosylmethionine and methylation. FASEB J. 10:471-480.Google Scholar
  73. 73.
    Michalowsky, L. A. and Jones, P. A. 1989. DNA methylation and differentiation. Environ. Health Perspect. 80:189-197.Google Scholar
  74. 74.
    Jhaveri, M. S., Wagner, C., and Trepel, J. B. 2001. Impact of extracellular folate levels on global gene expression. Mol. Pharmacol. 60:1288-1295.Google Scholar
  75. 75.
    Rein, T., DePamphilis, M. L., and Zorbas, H. 1998. Identifying 5-methylcytosine and related modifications in DNA genomes. Nucleic Acids Res. 26:2255-2264.Google Scholar
  76. 76.
    Murdoch, J. N., Doudney, K., Paternotte, C., Copp, A. J., and Stanier, P. 2001. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum. Mol. Genet. 10:2593-2601.Google Scholar
  77. 77.
    Greene, N. D., Gerrelli, D., Van Straaten, H. W., and Copp, A. J. 1998. Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: A model of severe neural tube defects. Mech. Dev. 73:59-72.Google Scholar
  78. 78.
    Murdoch, J. N., Rachel, R. A., Shah, S., Beermann, F., Stanier, P., Mason, C. A., and Copp A. J. 2001. Circletail, a new mouse mutant with severe neural tube defects: Chromosomal localization and interaction with the loop-tail mutation. Genomics 78:55-63.Google Scholar
  79. 79.
    Hollyday, M. 2001. Neurogenesis in the vertebrate neural tube. Int. J. Dev. Neurosci. 2:161-173.Google Scholar
  80. 80.
    Chenn, A., Zhang, Y. A., Chang, B. T., and McConnell, S. K. 1998. Intrinsic polarity of mammalian neuroepithelial cells. Mol. Cell Neurosci. 4:183-193.Google Scholar
  81. 81.
    Liem, K. F., Jr., Jessell, T. M., and Briscoe, J. 2000. Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development 22:4855-4866.Google Scholar
  82. 82.
    Briscoe, J., Sussel, L., Serup, P., Hartigan-O'Connor, D., Jessell, T. M., Rubenstein, J. L., and Ericson, J. 1999. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 6728:622-627.Google Scholar
  83. 83.
    Briscoe, J., Pierani, A., Jessell, T. M., and Ericson, J. 2000. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 4:435-445.Google Scholar
  84. 84.
    Takahashi, M. and Osumi, N. 2002. Pax6 regulates specification of ventral neurone subtypes in the hindbrain by establishing progenitor domains. Development 6:1327-1338.Google Scholar
  85. 85.
    Wilson, J. G. 1978. Handbook of Teratology. (ed. Wilson, J. G., and Fraser, F. C.), Vol. 1. Pages 357-385. Plenum Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Richard H. Finnell
    • 1
    • 2
  • Wade M. Junker
    • 3
  • Lisa Kvist Wadman
    • 4
  • Robert M. Cabrera
    • 1
  1. 1.Institute of Biosciences and TechnologyTexas A & M University System Health Science CenterHouston
  2. 2.Center for Environmental and Rural HealthTexas A & M UniversityCollege Station
  3. 3.Institute of Biosciences and TechnologyTexas A & M University System Health Science CenterHouston
  4. 4.Department of Medical Cell BiologyUppsala UniversityUppsalaSweden

Personalised recommendations