Neurochemical Research

, Volume 24, Issue 1, pp 33–36 | Cite as

Stimulation of Immunoreactive Insulin Release by Glucose in Rat Brain Synaptosomes

  • Maria S. Santos
  • Emilia M. Pereira
  • Arsélio P. Carvaho
Article

Abstract

The effect of glucose on the release of immunoreactive insulin (IRI) in synaptosomes isolated from rat brain was studied. In the absence of glucose synaptosomes release about 4% (0.77 μIU/mg protein) of total content. Glucose increases significantly the IRI released by synaptosomes. Addition of the glycolytic inhibitor iodoacetic acid (IAA), decreased the glucose-induced release of IRI by about 50%, suggesting that glucose metabolism is involved. The observation that glucose provides a concentration related signal for IRI release indicates that this synaptosomal preparation may be useful as a model for research on the mechanism of insulin release in brain.

Synaptosomes glucose brain insulin insulin release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Nehlig, A. 1997. Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia. Diabetes and Metab. 23:18–29.Google Scholar
  2. 2.
    Pressin, J. E. and Bell, G. I. 1992. Mammalian facilitative glucose transporter family: structure and molecular regulation Annu. Rev. Physiol. 54:911–930.Google Scholar
  3. 3.
    Lee, H. T. and Bondy, C. A. 1993. Ischemic injury induces brain glucose transporter gene expression. Endocrinology 133:2540–2544.Google Scholar
  4. 4.
    Gerhart, D. Z., Leino, R. L., Taylor, W. E., Borson, N. D., and Drewes, L. R. 1994. GLUT1 and GLU3 gene expression in gerbil brain following brief ischemia-an in situ hybridization study. Brain Res. 25:313–322.Google Scholar
  5. 5.
    Nagamatsu, S., Sawa, H., Inoue, N., Nakamichi, Y., Takeshima, H., and Hoshino, T. 1994. Gene expression of GLU3 glucose transporter regulated by glucose in vivo in mouse brain and in vitro in neuronal cell cultures from rat brain. Biochem. J. 300:125–131.Google Scholar
  6. 6.
    Vannucci, S. 1994. Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain. J. Neurochem. 62:240–246.Google Scholar
  7. 7.
    Henneberg, N. and Hoyer, S. 1994. Short-term or long-term intracerebroventricular (i.c.v.) infusion of insulin exhibits a discrete anabolic effect on cerebral energy metabolism in the rat. Neurosc. Lett. 175:153–156.Google Scholar
  8. 8.
    Hoyer, S., Prem, L., Sorbi, S., and Amaducci, L. 1993. Stimulation of glycolytic key enzymes in cerebral cortex by insulin. NeuroReport 4:991–993.Google Scholar
  9. 9.
    Schwartz, M. W., Figlewicz, D., P., Baskin, D. G., Woods, S. C., and Porte, D. 1992. Insulin in the brain: a hormonal regulator of energy metabolism. Endocrine Rev. 13:387–414.Google Scholar
  10. 10.
    Baskin, D. G., Wilcox, B. J., Figlewicz, D. P., and Dorsa, D. M. 1988. Insulin and insulin-like growth factors in the CNS. TINS 11:107–111.Google Scholar
  11. 11.
    Wozniak, M., Rydzewski, B., Baker, S. P. and Raizada, M. K. 1993. The cellular and physiological actions of insulin in the central nervous system. Neurochem. Int. 22:1–10.Google Scholar
  12. 12.
    Devaskar, S. U., Giddings, S. J., Rajakumar, P. A., Carnaghi, L. R., Menon, R. K., and Zahm, D. S. 1994. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem. 269:8445–8454.Google Scholar
  13. 13.
    Wei, L., Matsumoto, H., and Rhoads, D. E. 1990. Release of immunoreactive insulin from rat brain synaptosomes under depolarizing conditions. J. Neurochem. 54:1661–1665.Google Scholar
  14. 14.
    Havrankova, J., Schmechel, D., Roth, J., and Brownstein, M. 1978. Identification of insulin in rat brain. Proc. Natl. Acad. Sci. USA. 75:5337–5741.Google Scholar
  15. 15.
    Hedeskov, C. J. 1980. Mechanism of glucose-induced insulin secretion. Physiol. Reviews 60:442–509.Google Scholar
  16. 16.
    Clarke, D. W., Mudd, L., Boyd, F., Fields, M., and Raizada, M. K. 1986. Insulin is released from rat brain neuronal cells in culture. J. Neurochem. 47:831–836.Google Scholar
  17. 17.
    Swanson, R. A., Yu, A. C. H., Sharp, F. R., and Chan, P. H. 1989. Regulation of glycogen content in primary astrocyte culture: effects of glucose analogues, phenobarbital, and methionine sulfoximine. J. Neurochem. 52:1359–1365.Google Scholar
  18. 18.
    Kauppinen, R. A. and Nicholls, D. G. 1986. Failure to maintain glycolysis in anoxic nerve terminals. J. Neurochem. 47:1864–1869.Google Scholar
  19. 19.
    Lemay, D. R., Gehau, L. R., Zelenock, G. B., and D'Alecy, L. G. 1988. Insulin administration protects neurological function in cerebral ischemia in rats. Stroke 19:1411–1419.Google Scholar
  20. 20.
    Strong, A. J., Fairfield, J. E., Monteiro, E., Kirby, M., Hogg, A. R., Shape, M., and Rossfield, L. 1990. J. Neurol. Neurosurg. Psychiatry 53:847–853.Google Scholar
  21. 21.
    Zhu, C. Z. and Auer, R. N. 1994. Intraventricular administration of insulin and IGF-1 in transient forebrain ischemia. J. Cereb. Blood Flow Metab. 14:237–242.Google Scholar
  22. 22.
    Degen, D. B., Frolich, L., Hoyer, S. and Riederer, P. 1995. Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders. J. Neural. Transm. 46:139–147.Google Scholar
  23. 23.
    Hoyer, S. 1996. Oxidative metabolism deficiencies in brains of patients with Alzheimer's disease. Acta Neurol. Scand. 165:18–24.Google Scholar
  24. 24.
    Hajos, F. 1975. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 93:485–499.Google Scholar
  25. 25.
    Tesoriere, G., Vento, R., Calvaruso, G., Taibi, G., and Giuliano, M. 1992. Identification of insulin in chick embryo retina during development and its inhibitory effect on DNA synthesis. J. Neurochem. 58:1353–1359.Google Scholar
  26. 26.
    Santos, M. S., Moreno, A. J., and Carvalho, A. P. 1996. Relationships between ATP depletion, membrane potential, and the release of neurotransmitters in rat nerve terminals: an in vitro study under conditions that mimic anoxia, hypoglycemia and ischemia. Stroke 27:941–970.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Maria S. Santos
    • 1
  • Emilia M. Pereira
    • 2
  • Arsélio P. Carvaho
    • 1
  1. 1.Center for Neurosciences of Coimbra, Department of Zoology. M. S. Santos, Center for Neurosciences of Coimbra, Department of ZoologyUniversity of CoimbraCoimbraPortugal
  2. 2.Faculty of MedicineUniversity of CoimbraCoimbraPortugal

Personalised recommendations