Advertisement

Russian Journal of Applied Chemistry

, Volume 75, Issue 8, pp 1308–1311 | Cite as

Hydrodynamic Conformation Properties of Poly(1-Trimethylsilylpropyne) Molecules Obtained on NbCl5 Catalyst

  • I. N. Shtennikova
  • S. V. Bushin
  • G. F. Kolbina
  • V. S. Khotimskii
  • E. G. Litvinova
  • M. V. Chirkova
Article

Abstract

Hydrodynamic properties of 10 samples of poly(1-trimethylsilylpropyne) of various molecular weights, obtained with NbCl5 catalyst and containing 60-70% cis C = C bonds, were studied by sedimentation, translation diffusion, and viscometry techniques. The equilibrium rigidity of the polymer molecules was estimated from the viscometric data using the formalism of the intrinsic viscosity theory as applied to the worm-like coil model with excluded-volume effects. For the polymer macromolecules, the Kuhn segment length, thermodynamic parameter ε, and hydrodynamic diameter of the chain d were estimated.

Keywords

Macromolecule Thermodynamic Parameter Intrinsic Viscosity Hydrodynamic Diameter Segment Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Shtennikova, I.N., Kolbina, G.F., Khotimskii, V.S., et al., Vysokomol. Soedin., Ser. A, 1998, vol. 40, no. 10, pp. 1569-1576.Google Scholar
  2. 2.
    Shtennikova, I.N., Filipova, T.V., Volokhina, A,V., and Lavrenko, P.N., Vysokomol. Soedin., Ser. A, 1996, vol. 38, no. 8, pp. 1320-1327.Google Scholar
  3. 3.
    Tsvetkov, V.N., Eskin, V.E., and Frenkel', S.Ya., Struktura makromolekul v rastvorakh (Structure of Macromolecules in Solutions), Moscow: Nauka, 1964.Google Scholar
  4. 4.
    Chirkova, M.V., Litvinova, E.G., Rebrov, A.I., et al., Abstracts of Papers, Vtoroi rossiiskii karginskii simpozium: Khimiya i fizika v nachale XXI veka (Second Russian Kargin Symp.: Chemistry and Physics in the Beginning of the 21th Century), Chernogolovka, May 29-31, 2000, part 2, pp. 4-7.Google Scholar
  5. 5.
    Shtennikova, I.N., Kolbina, G.F., Yakimanskii, A.V., et al., Vysokomol. Soedin., Ser. A, 1998, vol. 40, no. 12, pp. 1973-1978.Google Scholar
  6. 6.
    Shtennikova, I.N., Bushin, S.V., Kolbina, G.F., and Yakimanskii, A.V., Vysokomol. Soedin., Ser. A, 2000, vol. 42, no. 9, pp. 1537-1546.Google Scholar
  7. 7.
    Bushin, S.V., Tsvetkov, V.N., Lysenko, E.B., and Emel'yanov, V.N., Vysokomol. Soedin., Ser. A, 1981, vol. 23, no. 11, pp. 2494-2503.Google Scholar
  8. 8.
    Sharp, P. and Bloomfield, V.A., J. Chem. Phys., 1968, vol. 48, no. 5, pp. 2149-2155.Google Scholar
  9. 9.
    Gray, H.B., Bloomfield, V.A., and Hearst, J.E., J. Chem. Phys., 1967, vol. 46, no. 4, pp. 1493-1498.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • I. N. Shtennikova
    • 1
    • 2
  • S. V. Bushin
    • 1
    • 2
  • G. F. Kolbina
    • 1
    • 2
  • V. S. Khotimskii
    • 1
    • 2
  • E. G. Litvinova
    • 1
    • 2
  • M. V. Chirkova
    • 1
    • 2
  1. 1.Russian Academy of SciencesInstitute of Macromolecular CompoundsSt. PetersburgRussia
  2. 2.Topchiev Institute of Petroleum Chemical SynthesisMoscowRussia

Personalised recommendations