Journal of Chemical Ecology

, Volume 24, Issue 9, pp 1529–1549 | Cite as

Biological Activity of Datura wrightii Glandular Trichome Exudate Against Manduca Sexta Larvae

  • Nicole M. Van Dam
  • J. Daniel Hare

Abstract

Natural populations of Datura wrightii in southern California consist of two distinctly different phenotypes. The leaves of one phenotype are densely covered with nonglandular trichomes and feel velvety. The other phenotype is covered with larger type IV glandular trichomes that excrete a sticky exudate. Neonate larvae of M. sexta reared on velvety leaves developed significantly faster than larvae on sticky leaves. Larvae on sticky leaves took 28% longer to reach the prepupal stage. Survival and pupal weight were not significantly different between the two groups. First instars of M. sexta had a significantly higher consumption rate on velvety leaves than on sticky leaves. Removal of the exudate from stickly leaves significantly increased larval consumption rates compared to unwashed controls. Female moths did not show an oviposition preference; both in the lab and in the field the two trichome phenotypes of D. wrightii received similar egg loads. Because there were no significant differences in other nutritional factors between the two plant phenotypes, we concluded that the exudate was responsible for the effect. We isolated a complex mixture of sugar esters (SE) as the biologically active compounds in the exudate of D. wrightii. The SE mixture was composed of glucose esterified with several combinations of straight chain C6–C9 acids. By comparing GC-MS spectra of synthetic SE with the SE extracted from D. wrightii, we identified one of the SE as 3′-O-hexanoyl glucose.

Tobacco hornworm Solanaceae insect–plant interactions glandular trichomes exudate resistance polymorphism oviposition choice acyl sugar esters Lepidoptera Sphingidae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Allen, S. E. 1974. Chemical Analysis of Ecological Material. John Wiley & Sons, New York.Google Scholar
  2. Appel, H. M., and Martin, M. M. 1992. Significance of metabolic load in the evolution of host specificity of Manduca sexta. Ecology 73:216–228.Google Scholar
  3. Avery, A., Satina, S., and Rietsema, J. 1959. Blakeslee: The Genus Datura. Ronald Press, New York.Google Scholar
  4. Berdegue, M., Trumble, J. T., Hare, J. D., and Redak, R. A. 1996. Is it enemy–free space? The evidence for terrestrial insect and freshwater arthropods. Ecol. Entomol. 21:203–217.Google Scholar
  5. Buta, J. G., Lusby, W. R., Neal, J. W., Waters, R. M., and Pittarelli, G. W. 1993. Sucrose esters from Nicotiana gossei active against the greenhouse whitefly Trialeuroides vaporariorum. Phytochemistry 32:859–864.Google Scholar
  6. Casey, T. 1976. Activity patterns, body temperature and thermal ecology in two desert caterpillars (Lepidoptera: Sphingidae). Ecology 57:485–497.Google Scholar
  7. Cheeke, P. R., and Shull, L. R. 1985. Natural Toxicants in Feeds and Poisonous Plants. AVI Publishing, Westport, Connecticut.Google Scholar
  8. Chortyk, O. T., Pomonis, J. G., and Johnson, A. W. 1996. Syntheses and characterizations of insecticidal sucrose esters. J. Agric. Food Chem. 44:1551–1557.Google Scholar
  9. Dimock, M. B., and Kennedy, G. G. 1983. The role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Heliothis zea. Entomol. Exp. Appl. 33:263–268.Google Scholar
  10. Duffey, S. S. 1986. Plant glandular trichomes: their partial role in defence against insects, pp. 152–171, in B. E. Juniper and T. R. E. Southwood (eds.). Insects and the Plant Surface. Edward Arnold, London.Google Scholar
  11. Duffey, S. S., and Isman, M. B. 1981. Inhibition of insect larval growth by phenolics in glandular trichomes of tomato leaves. Experientia 37:574–576.Google Scholar
  12. Fliniaux, M. A., Manceau, F., and Jacquin Dubreuil, A. 1993. Simultaneous analysis of l–hyoscyamine, l–scopolamine and dl–tropic acid in plant material by reversed–phase high–performance liquid chromatography. J. Chromatogr. 644:193–197.Google Scholar
  13. Gilmore, J. U. 1938. Observations on the hornworms attacking tobacco in Tennessee and Kentucky. J. Econ. Entomol. 31:706–707.Google Scholar
  14. Goffreda, J. C., Mutschler, M. A., AvÉ, D. A., Tingey, W. M., and Steffens, J. C. 1989. Aphid deterrence by glucose esters in glandular trichome exudate of the wild tomato, Lycopersicon pennellii. J. Chem. Ecol. 15:2135–2147.Google Scholar
  15. Goffreda, J. C., Steffens, J. C., and Mutschler, M. A. 1990. Association of epicuticular sugars with aphid resistance in hybrids with wild tomato. J. Am. Soc. Hortic. Sci. 115:161–165.Google Scholar
  16. Harborne, J. B. 1973. Phytochemical Methods, 1st ed. Chapman and Hall, London.Google Scholar
  17. Hodges, R. W. 1971. The Moths of North America and Mexico, including Greenland. Fascicle 21. Sphingoidea (Hawkmoths). E. W. Classey Ltd. and R. B. D. Publications Inc., London.Google Scholar
  18. Hoffman, J. D., Lawson, F. R., and Yamamoto, R. 1966. Tobacco hornworms, pp. 479–486, in C. N. Smith (ed.). Insect Colonization and Mass Production. Academic Press, New York.Google Scholar
  19. Juvik, J. A., Shapiro, J. A., Young, T. E., and Mutschler, M. A. 1994. Acylglucoses from wild tomatoes alter behavior and reduce growth and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 87:482–492.Google Scholar
  20. Kennedy, G. G., and Yamamoto, R. T. 1979. A toxic factor causing resistance in a wild tomato to the tobacco hornworm and some other insects. Entomol. Exp. Appl. 26:121–126.Google Scholar
  21. Kennedy, G. G., Yamamoto, R. T., Dimock, M. B., Williams, W. G., and Bordner, J. 1981. Effect of daylength and light intensity on 2–tridecanone levels and resistance in Lycopersicon hirsutum f. glabratum to Manduca sexta. J. Chem. Ecol. 7:707–716.Google Scholar
  22. King, R. R., and Calhoun, L. A. 1988, 2,3–Di–O–and 1,2,3–tri–O–acylated glucose esters from the glandular trichomes of Datura metel. Phytochemistry 27:3761–3764.Google Scholar
  23. King, R. R., Calhoun, L. A., and Singh, R. P. 1988. 3,4–Di–O–and 2,3,4–tri–O–acylated glucose esters from the glandular trichomes of nontuberous Solanum Species. Phytochemistry 27:3765–3768.Google Scholar
  24. Lauter, D. J., and Munns, D. N. 1986. Water loss via the glandular trichomes of chickpea (Cicer arietinum L.). J. Exp. Bot. 37:640–649.Google Scholar
  25. Liedl, B. E., Lawson, D. M., White, K. K., Shapiro, J. A., Cohen, D. E., Carson, W. G., Trumble, J. T., and Mutschler, M. A. 1995. Acylsugars of wild tomato Lycopersicon pennellii alters settling and reduces oviposition of Bemisia argentifolii. J. Econ. Entomol. 88:742–748.Google Scholar
  26. Liu, T. X., Stansly, P. A., and Chortyk, O. T. 1996. Insecticidal activity of natural and synthetic sugar esters against Bemisia argentifolii (Homoptera: Aleyrodidae). J. Econ. Entomol. 89:1233–1239.Google Scholar
  27. Luckwill, L. C. 1943. The genus Lycopersicon, An Historical, Biological, and Taxonomic Survey of the Wild and Cultivated Tomatoes. The University Press, Aberdeen.Google Scholar
  28. Madden, A. H., and Chamberlin, F. S. 1945. Biology of the tobacco hornworm in the southern cigar–tobacco district. USDA Technical Bulletin 896, pp. 1–51.Google Scholar
  29. McFadden, M. W. 1968. Observations on feeding and movement of tobacco hornworm larvae. J. Econ. Entomol. 61:352–356.Google Scholar
  30. Munz, P. A. 1973. A Californian Flora (with Supplement), 1973 ed. University of California Press, Berkeley.Google Scholar
  31. Neal, J. J., Steffens, J. C., and Tingey, W. T. 1989. Glandular trichomes of Solanum berthaultii and resistance to the Colorado potato beetle. Entomol. Exp. Appl. 51:133–140.Google Scholar
  32. Neal, J. J., Tingey, W. T., and Steffens, J. 1990. Sucrose esters of carboxylic acids in glandular trichomes of Solanum berthaultii deter settling and probing by green peach aphid. J. Chem. Ecol. 16:487–497.Google Scholar
  33. Oatman, E. R., and Platner, G. R. 1978. Effect of mass releases of Trichogamma pretosium against Lepidopterous pests on processing tomatoes in southern California, with notes on host egg population trends. J. Econ. Entomol. 71:896–900.Google Scholar
  34. Oatman, E. R., Platner, G. R., Wyman, J. A., Van Steenwyk, R. A., Johnson, M. W., and Browning, H. W. 1983. Parasitization of lepidopterous pests on fresh market tomatoes on southern California. J. Econ. Entomol. 76:452–455.Google Scholar
  35. Patouraux–PromÉ, D., and PromÉ, J. C. 1984. Carbohydrates, pp. 105–156, in G. Odham, L. Larsson, and P. A. Maerdh (eds.). Gas Chromatography–Mass Spectrometry Applications in Microbiology. Plenum Press, New York.Google Scholar
  36. Rabb, R. L., and Bradley, J. R. 1968. The influence of host plants on parasitism of eggs of the tobacco hornworm. J. Econ. Entomol. 61:1249–1252.Google Scholar
  37. Severson, R. F., Chortyk, O. T., Stephenson, M. G., Akey, D. H., Neal Jr., J. W., Pittarelli, G. W., Jackson, D. M., and Sisson, V. A. 1994. Characterization of natural pesticide from Nicotiana gossei, pp. 107–121, in P. A. Hedin (ed.). Bioregulators for Crop Protection and Pest Control. ACS Symposium Series 557. American Chemical Society, Washington, D.C.Google Scholar
  38. Simms, E. L. 1992. Costs of plant resistance to herbivory, pp. 392–425, in R. S. Fritz and E. L. Simms (eds.). Plant Resistance to Herbivores and Pathogens. Ecology, Evolution, and Genetics. The University of Chicago Press, Chicago.Google Scholar
  39. Steffens, J. C., Kowalski, S. P., and Yu, H. 1990. Characterization of glandular trichome and plastid polyphenol oxidases of potato, pp. 103–112, in M. E. Vayda and W. D. Park (eds.). The Molecular and Cellular Biology of Potato. CAB International, Oxford.Google Scholar
  40. Sweeney, R. A. 1989. Generic combustion method for determination of crude protein in feeds: A collaborative study. J. Assoc. Off Anal. Chem. 72:770–774.Google Scholar
  41. Thompson, J. N. 1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol. Exp. Appl. 47:3–14.Google Scholar
  42. Thurston, R. 1970. Toxicity of trichome exudates of Nicotiana and Petunia species to tobacco hornworm larvae. J. Econ. Entomol. 63:272–274.Google Scholar
  43. Tingey, W. M. 1981. The environmental control of insects using plant resistance, pp. 175–197, in D. Pimentel (ed.). CRC Handbook of Pest Management in Agriculture, Vol. 1. CRC Press, Boca Raton, Florida.Google Scholar
  44. Van Dam, N. M., and Harf, J. D. 1998. Differences in distribution and performance of two sapsucking herbivores on glandular and non–glandular trichomes in Datura wrightii. Ecol. Entomol. 23:22–32.Google Scholar
  45. van Dam, N. M., Hare, J. D., and Elle, E. E. 1998. Inheritance and distribution of trichome phenotypes in Datura wrightii. J. Heredity. In press.Google Scholar
  46. Walters, D. S., and Steffens, J. C. 1990. Branched chain amino acid metabolism in the biosynthesis of Lycopersicon pennellii glucose esters. Plant Physiol. Biochem. 93:1544–1551.Google Scholar
  47. Williams, W. G., Kennedy, G. G., Yamamoto, R. T., Thacker, J. D., and Bordner, J. 1980. 2–Tridecanone: A naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science 202:888–889.Google Scholar
  48. Yamamoto, R. T., Jenkins, R. Y., and McClusky, R. K. 1969. Factors determining the selection of plants for oviposition by the tobacco hornworm Manduca sexta. Entomol. Exp. Appl. 12:504–508.Google Scholar
  49. Yencho, G. C., Renwick, J. A. A., Steffens, J. C., and Tingey, W. M. 1994. Leaf surface extracts of Solanum berthaultii Hawkes deter Colorado potato beetle feeding. J. Chem. Ecol. 20:991–995.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Nicole M. Van Dam
    • 1
  • J. Daniel Hare
    • 1
  1. 1.Department of EntomologyUniversity of California, Riverside, Riverside
  2. 2.Max Planck Institute of Chemical EcologyJenaGermany

Personalised recommendations