Potential Analysis

, Volume 18, Issue 3, pp 187–217 | Cite as

Hardy and Rellich-Type Inequalities for Metrics Defined by Vector Fields

  • Gabriele Grillo
Article

Abstract

Let X i , i=1,m be a system of locally Lipschitz vector fields on DR n , such that the corresponding intrinsic metric ϱ is well-defined and continuous w.r.t. the Euclidean topology. Suppose that the Lebesgue measure is doubling w.r.t. the intrinsic balls, that a scaled L1 Poincaré inequality holds for the vector fields at hand (thus including the case of Hörmander vector fields) and that the local homogeneous dimension near a point x0 is sufficiently large. Then weighted Sobolev–Poincaré inequalities with weights given by power of ϱ(⋅,x0) hold; as particular cases, they yield non-local analogues of both Hardy and Sobolev–Okikiolu inequalities. A general argument which shows how to deduce Rellich-type inequalities from Hardy inequalities is then given: this yields new Rellich inequalities on manifolds and even in the uniformly elliptic case. Finally, applications of Sobolev–Okikiolu inequalities to heat kernel estimates for degenerate subelliptic operators and to criteria for the absence of bound states for Schrödinger operators H=−L+V are given.

Hardy inequality Rellich inequality Sobolev–Okikiolu inequality degenerate elliptic operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schrödinger Operators, Princeton University Press, 1982.Google Scholar
  2. 2.
    Beckner, W.: 'Pitt inequality and the uncertainty principle', Proc. Amer. Math. Soc. 123 (1995), 1897-1905.Google Scholar
  3. 3.
    Carron, G.: 'Inégalités de Hardy sur les variétés, riemanniene non-compactes', J. Math. Pures Appl. 76 (1997), 883-891.Google Scholar
  4. 4.
    Cipriani, F.: 'Intrinsic ultracontractivity of Dirichlet Laplacians in non-smooth domains', Potential Anal. 3 (1994), 203-218.Google Scholar
  5. 5.
    Cipriani, F. and Grillo, G.: 'Lp exponential decay for solutions to functional equations in local Dirichlet spaces', J. Reine Angew. Math. 496 (1998), 163-179.Google Scholar
  6. 6.
    Coifman, R.R. and Weiss, G.: Analyse Harmonique Non-Commutative Sur Certain Espaces Homogènes, Lecture Notes in Math. 242, 1971.Google Scholar
  7. 7.
    Danielli, D.: 'A Fefferman—Phong type inequality and applications to quasilinear subelliptic equations', Potential Anal. 11 (1999), 387-413.Google Scholar
  8. 8.
    Davies, E.B.: Heat Kernels and Spectral Theory, Cambridge University Press, 1989.Google Scholar
  9. 9.
    Davies, E.B.: 'Eigenvalue stability bounds via weighted Sobolev spaces', Math. Z. 214 (1993), 357-371.Google Scholar
  10. 10.
    Davies, E.B.: 'A review of Hardy inequalities', in The Maz'ya Anniversary Collection, Vol. 2 (Rostock, 1998), Oper. Theory Adv. Appl. 110, Birkhäuser, Basel, 1999, pp. 55-67.Google Scholar
  11. 11.
    Davies, E.B. and Hinz, A.M.: 'Explicit constants for Rellich inequalities in Lp(@)', Math. Z. 227 (1998), 511-523.Google Scholar
  12. 12.
    Folland, G.B. and Stein, E.M.: Hardy Spaces on Homogeneous Spaces, Princeton University Press, 1982.Google Scholar
  13. 13.
    Franchi, B. and Wheeden, R.L.: 'Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type', J. Inequal. Appl. 3 (1999), 65-89.Google Scholar
  14. 14.
    Franchi, B., Gallot, S. and Wheeden, R.L.: 'Sobolev and isoperimetric inequalities for degenerate metrics', Math. Ann. 300 (1994), 557-571.Google Scholar
  15. 15.
    Franchi, B., Gutierrez, C.E. and Wheeden, R.L.: 'Weighted Sobolev—Poincaré inequalities for Grushin type operators', Comm. Partial Diffferential Equations 19 (1994), 523-604.Google Scholar
  16. 16.
    Franchi, B., Lu, G. and Wheeden, R.L.: 'A relationship between Poincaré type inequalities and representation formulas in spaces of homogeneous type', Internat. Math. Res. Notes 1 (1996), 1-14.Google Scholar
  17. 17.
    Garofalo, N. and Nhieu, D.—M.: 'Isoperimetric and Sobolev inequalities for Carnot Carathéodory spaces and the existence of minimal surfaces', Comm. Pure Appl. Math. 49 (1996), 1081-1144.Google Scholar
  18. 18.
    Glaser, V., Martin, A., Grosse, H. and Thirring, W.: 'A family of optimal conditions for the absence of bound states in a potential', in E.H. Lieb, B. Simon and A.S. Wightman (eds), Studies in Mathematical Physics, Princeton University Press, 1976, pp. 169-194.Google Scholar
  19. 19.
    Hajlasz, P. and Koskela, P.: 'Sobolev met Poincaré', Mem. Amer. Math. Soc. 145 (2000), 688.Google Scholar
  20. 20.
    Hamenstadt, U.: 'Some regularity theorems for Carnot—Carathéodory metrics', J. Differential Geom. 32 (1990), 819-850.Google Scholar
  21. 21.
    Kufner, A.: Weighted Sobolev Inequalities, Teubner, Leipzig, 1980.Google Scholar
  22. 22.
    Lieb, E.: 'Sharp constants in the Hardy—Littlewood—Sobolev and related inequalities', Ann. Math. 118 (1983), 349-374.Google Scholar
  23. 23.
    Maheux, P. and Saloff-Coste, L.: 'Analyse sur les boules d'un opérateur sous-elliptique', Math. Ann. 303 (1995), 713-740.Google Scholar
  24. 24.
    Maz'ya, V.G.: Sobolev Spaces, Springer Series in Soviet Math., Springer-Verlag, Berlin, 1985.Google Scholar
  25. 25.
    Montgomery, R.: 'Survey of singular geodesics', in Subriemannian Geometry, Progr. Math. 144, Birkhäuser, Basel, 1996, pp. 325-339.Google Scholar
  26. 26.
    Nagel, A., Stein, E. and Wainger, M.: 'Balls and metrics defined by vector fields', Acta Math. 155 (1985), 103-147.Google Scholar
  27. 27.
    Opic, B. and Kufner, A.: Hardy-Type Inequalities, Pitman Res. Notes in Math. 219,Wiley, New York, 1990.Google Scholar
  28. 28.
    Pang, M.M.H.: 'L1-properties of two classes of singular second order elliptic operators', J. London Math. Soc. 38 (1988), 525-543.Google Scholar
  29. 29.
    Pang, M.M.H.: 'L1 and L2 properties of a class of singular second order elliptic operators on Rn with measurable coefficients', J. Differential Equations 129 (1996), 1-17.Google Scholar
  30. 30.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. 2, Fourier Analysis, Self-Adjointness, Academic Press, 1975.Google Scholar
  31. 31.
    Solomyak, M.: 'A remark on the Hardy inequalities', Integral Equations Operator Theory (1994), 120-124.Google Scholar
  32. 32.
    Saloff-Coste, L.: 'A note on Poincaré, Sobolev, and Harnack inequalities', Internat. Math. Res. Notices 2 (1992), 27-38.Google Scholar
  33. 33.
    Sawyer, E. and Wheeden, R.L.: 'Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces', Amer. J. Math. 114 (1992), 813-874.Google Scholar
  34. 34.
    Strichartz, R.S.: 'Sub-Riemannian geometry', J. Differential Geom. 24 (1986), 221-263. Erratum, J. Differential Geom. 30 (1989), 595-596.Google Scholar
  35. 35.
    Sturm, K.T.: 'On the geometry defined by Dirichlet forms', in E. Bolthausen, M. Dozzi and F. Russo (eds), Seminar on Stochastic Analysis, Random Fields and Applications, Birkhäuser, 1995, pp. 231-242.Google Scholar
  36. 36.
    Varopoulos, N., Saloff-Coste, L. and Coulhon, T.: Analysis and Geometry on Groups, Cambridge University Press, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Gabriele Grillo
    • 1
  1. 1.Dipartimento di MatematicaPolitecnico di TorinoTorinoItaly

Personalised recommendations